Rear-end crashes are among the most common crash types at signalized intersections. To examine the risk factors for the occurrence of this crash type, this study involved the analysis of nine years of intersection cra...Rear-end crashes are among the most common crash types at signalized intersections. To examine the risk factors for the occurrence of this crash type, this study involved the analysis of nine years of intersection crash records in the state of Wyoming. With that, the contributing factors related to crash, driver, environmental, and roadway characteristics, including pavement surface friction, were investigated. A binomial logistic regression modeling approach was applied to achieve the study’s objective. The results showed that three factors related to crash and driver’s attributes (commercial vehicle involvement, speeding, and driver’s age) and four factors related to environmental and roadway characteristics (lighting, weather conditions, area type, whether urban or rural and pavement friction) are associated with the risk of rear-end crash occurrence at signalized intersections. This study provides insights into the mitigation measures to implement concerning rear-end crashes at signalized intersections.展开更多
This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using...This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using historical loop detector data from Interstate-894 in Milwaukee, Wisconsin, USA. The extracted loop detection data were aggregated over different stations and time intervals to produce explanatory features. A feature selection process, which addresses the interaction between SVM classifiers and explanatory features, was adopted to identify the features that significantly influence rear-end crashes. Afterwards, the identified significant explanatory features over three separate time levels were used to train three SVM models. In the end, the multi-layer perceptron(MLP) artificial neural network models were used as benchmarks to evaluate the performance of SVM models. The results show that the proposed feature selection procedure greatly enhances the accuracy and generalization capability of SVM models. Moreover, the optimal SVM classifier achieves 81.1% overall prediction precision rate. In comparison with MLP artificial neural networks, SVM models provide better results in terms of crash prediction accuracy and false positive rate, which confirms the superior performance of SVM technique in rear-end crash potential prediction analysis.展开更多
Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extr...Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.展开更多
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. Thi...Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. This study analyzes road crash data from the past five years, obtained from the Road-Railway Police Bureau (PC08) and TSB (Traffic Safety Board) in HCMC. This analysis gives us valuable insights into road crash patterns, characteristics, and underlying causes. This comprehensive understanding serves as a scientific foundation for developing cohesive strategies and implementing targeted solutions to address road traffic safety issues more effectively in the future.展开更多
Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the c...Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the critical factors for occupant injury severity in the specific rear-end crash type involving trucks as the front vehicle (W). Methods: This paper investigated crashes occurred from 2011 to 2013 in Beijing area, China and selected 100 qualified cases i.e., rear-end crashes involving trucks as the FV. The crash data were supplemented with interviews from police officers and vehicle inspection. A binary logistic regression model was used to build the relationship between occupant injury severity and corresponding affecting factors. More- over, a multinomial logistic model was used to predict the likelihood of fatal or severe injury or no injury in a rear-end crash. Results: The results provided insights on the characteristics of driver, vehicle and environment, and the corresponding influences on the likelihood of a rear-end crash. The binary logistic model showed that drivers' age, weight difference between vehicles, visibility condition and lane number of road signifi- cantly increased the likelihood for severe injury of rear-end crash. The multinomial logistic model and the average direct pseudo-elasticity of variables showed that night time, weekdays, drivers from other provinces and passenger vehicles as rear vehicles significantly increased the likelihood of rear drivers being fatal. Conclusion: All the abovementioned significant factors should be improved, such as the conditions of lighting and the layout of lanes on roads. Two of the most common driver factors are drivers' age and drivers' original residence. Young drivers and outsiders have a higher injury severity. Therefore it is imperative to enhance the safety education and management on the young drivers who steer heavy duty truck from other cities to Beiiing on weekdays.展开更多
Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accurac...Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.展开更多
With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.C...With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.展开更多
Near crash events are often regarded as an excellent surrogate measure for traffic safety research because they include abrupt changes in vehicle kinematics that can lead to deadly accident scenarios. In this paper, w...Near crash events are often regarded as an excellent surrogate measure for traffic safety research because they include abrupt changes in vehicle kinematics that can lead to deadly accident scenarios. In this paper, we introduced machine learning and deep learning algorithms for predicting near crash events using LiDAR data at a signalized intersection. To predict a near crash occurrence, we used essential vehicle kinematic variables such as lateral and longitudinal velocity, yaw, tracking status of LiDAR, etc. A deep learning hybrid model Convolutional Gated Recurrent Neural Network (CNN + GRU) was introduced, and comparative performances were evaluated with multiple machine learning classification models such as Logistic Regression, K Nearest Neighbor, Decision Tree, Random Forest, Adaptive Boost, and deep learning models like Long Short-Term Memory (LSTM). As vehicle kinematics changes occur after sudden brake, we considered average deceleration and kinematic energy drop as thresholds to identify near crashes after vehicle braking time . We looked at the next 3 seconds of this braking time as our prediction horizon. All models work best in the next 1-second prediction horizon to braking time. The results also reveal that our hybrid model gathers the greatest near crash information while working flawlessly. In comparison to existing models for near crash prediction, our hybrid Convolutional Gated Recurrent Neural Network model has 100% recall, 100% precision, and 100% F1-score: accurately capturing all near crashes. This prediction performance outperforms previous baseline models in forecasting near crash events and provides opportunities for improving traffic safety via Intelligent Transportation Systems (ITS).展开更多
This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe veh...This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.展开更多
深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追...深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追尾事故数据为研究对象,将原始数据按照7∶3随机分为训练集和测试集。在训练集数据上,利用生成式插补网络(Generative Adversarial Imputation Network,GAIN)实现对缺失数据的填补。为对比不同数据填补方法的效果,同时选择多重插补(Multiple Imputation by Chained Equations,MICE)算法、期望最大化(Expectation Maximization,EM)填充算法、缺失森林(MissForest)算法和K最近邻(K-Nearest Neighbor,KNN)算法对同一数据集进行数据填补,并基于填补前后变量方差变化比较不同填补算法对数据变异性的影响。在完成数据填补的基础上,构建LightGBM三分类事故严重程度影响因素分析模型。使用原始训练集数据,以及填补后的训练集数据分别训练模型,并使用未经填补的测试集数据检验模型预测效果。结果表明,经缺失值填补后,模型性能得到一定改善,使用GAIN填补数据集训练的模型,相较于原始数据训练的模型,准确率提高了6.84%,F1提高了4.61%,AUC(Area Under the Curve)提高了10.09%,且改善效果优于其他4种填补方法。展开更多
This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in Chi...This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.展开更多
This article is a compilation of teen driver crash contributing factors typically extractable from the crash data collection system in the United States.Tremendous research effort has been undertaken over the decades ...This article is a compilation of teen driver crash contributing factors typically extractable from the crash data collection system in the United States.Tremendous research effort has been undertaken over the decades to comprehend teen driver crash risks,as teen drivers continue to be over-involved in crashes even when accounting for the driving exposure.This article presents the contexts of crash factors related to operating conditions,roadway,vehicle,and driver and their unique influences on teen driver crashes in terms of estimated risk,prevalence,and estimated likelihood mainly from descriptive and analytical studies.The key variables are selected based on the number of studies that considered each risk factor for analysis.The understanding of crash factors could be translated into graduated driver licensing and other teen driver safety programs.While the discussions were grounded in crash studies carried out in the United States,the insights gleaned from these studies hold the potential to offer valuable guidance to other countries.For example,the insights and discussions can serve as a catalyst for the development and improvement of driver education programs tailored to address the specific requirements and difficulties confronted by their teenage drivers.展开更多
An important issue in analyzing accident blackspots is the estimation of severity levels of different types of accidents.This study aims to estimate the severity level of accidents in Bahrain using crash costs.These c...An important issue in analyzing accident blackspots is the estimation of severity levels of different types of accidents.This study aims to estimate the severity level of accidents in Bahrain using crash costs.These crash costs were calculated by the Human Capital Approach(HCA)and total reported costs from the victims.The data was collected from the General Directorate of Traffic,insurance companies,Ministry of Works(MoW)and Ministry of Health.It was found,from the survey responses,that there was no significant effect of victim characteristics on the total cost of the accidents.The severity levels were found to be higher than those found in previous literature or adopted by local authorities which could be attributed to the economic conditions of Bahrain.Moreover,the weights found by both approaches were different from each other.Therefore,it is recommended to use the HCA approach due to its comprehensive calculations involving future costs.展开更多
文摘Rear-end crashes are among the most common crash types at signalized intersections. To examine the risk factors for the occurrence of this crash type, this study involved the analysis of nine years of intersection crash records in the state of Wyoming. With that, the contributing factors related to crash, driver, environmental, and roadway characteristics, including pavement surface friction, were investigated. A binomial logistic regression modeling approach was applied to achieve the study’s objective. The results showed that three factors related to crash and driver’s attributes (commercial vehicle involvement, speeding, and driver’s age) and four factors related to environmental and roadway characteristics (lighting, weather conditions, area type, whether urban or rural and pavement friction) are associated with the risk of rear-end crash occurrence at signalized intersections. This study provides insights into the mitigation measures to implement concerning rear-end crashes at signalized intersections.
基金Project(BK20160685)supported by the Science Foundation of Jiangsu Province,ChinaProject(61620106002)supported by the National Natural Science Foundation of China
文摘This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using historical loop detector data from Interstate-894 in Milwaukee, Wisconsin, USA. The extracted loop detection data were aggregated over different stations and time intervals to produce explanatory features. A feature selection process, which addresses the interaction between SVM classifiers and explanatory features, was adopted to identify the features that significantly influence rear-end crashes. Afterwards, the identified significant explanatory features over three separate time levels were used to train three SVM models. In the end, the multi-layer perceptron(MLP) artificial neural network models were used as benchmarks to evaluate the performance of SVM models. The results show that the proposed feature selection procedure greatly enhances the accuracy and generalization capability of SVM models. Moreover, the optimal SVM classifier achieves 81.1% overall prediction precision rate. In comparison with MLP artificial neural networks, SVM models provide better results in terms of crash prediction accuracy and false positive rate, which confirms the superior performance of SVM technique in rear-end crash potential prediction analysis.
文摘Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
文摘Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. This study analyzes road crash data from the past five years, obtained from the Road-Railway Police Bureau (PC08) and TSB (Traffic Safety Board) in HCMC. This analysis gives us valuable insights into road crash patterns, characteristics, and underlying causes. This comprehensive understanding serves as a scientific foundation for developing cohesive strategies and implementing targeted solutions to address road traffic safety issues more effectively in the future.
文摘Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the critical factors for occupant injury severity in the specific rear-end crash type involving trucks as the front vehicle (W). Methods: This paper investigated crashes occurred from 2011 to 2013 in Beijing area, China and selected 100 qualified cases i.e., rear-end crashes involving trucks as the FV. The crash data were supplemented with interviews from police officers and vehicle inspection. A binary logistic regression model was used to build the relationship between occupant injury severity and corresponding affecting factors. More- over, a multinomial logistic model was used to predict the likelihood of fatal or severe injury or no injury in a rear-end crash. Results: The results provided insights on the characteristics of driver, vehicle and environment, and the corresponding influences on the likelihood of a rear-end crash. The binary logistic model showed that drivers' age, weight difference between vehicles, visibility condition and lane number of road signifi- cantly increased the likelihood for severe injury of rear-end crash. The multinomial logistic model and the average direct pseudo-elasticity of variables showed that night time, weekdays, drivers from other provinces and passenger vehicles as rear vehicles significantly increased the likelihood of rear drivers being fatal. Conclusion: All the abovementioned significant factors should be improved, such as the conditions of lighting and the layout of lanes on roads. Two of the most common driver factors are drivers' age and drivers' original residence. Young drivers and outsiders have a higher injury severity. Therefore it is imperative to enhance the safety education and management on the young drivers who steer heavy duty truck from other cities to Beiiing on weekdays.
文摘Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.
文摘With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.
文摘Near crash events are often regarded as an excellent surrogate measure for traffic safety research because they include abrupt changes in vehicle kinematics that can lead to deadly accident scenarios. In this paper, we introduced machine learning and deep learning algorithms for predicting near crash events using LiDAR data at a signalized intersection. To predict a near crash occurrence, we used essential vehicle kinematic variables such as lateral and longitudinal velocity, yaw, tracking status of LiDAR, etc. A deep learning hybrid model Convolutional Gated Recurrent Neural Network (CNN + GRU) was introduced, and comparative performances were evaluated with multiple machine learning classification models such as Logistic Regression, K Nearest Neighbor, Decision Tree, Random Forest, Adaptive Boost, and deep learning models like Long Short-Term Memory (LSTM). As vehicle kinematics changes occur after sudden brake, we considered average deceleration and kinematic energy drop as thresholds to identify near crashes after vehicle braking time . We looked at the next 3 seconds of this braking time as our prediction horizon. All models work best in the next 1-second prediction horizon to braking time. The results also reveal that our hybrid model gathers the greatest near crash information while working flawlessly. In comparison to existing models for near crash prediction, our hybrid Convolutional Gated Recurrent Neural Network model has 100% recall, 100% precision, and 100% F1-score: accurately capturing all near crashes. This prediction performance outperforms previous baseline models in forecasting near crash events and provides opportunities for improving traffic safety via Intelligent Transportation Systems (ITS).
文摘This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.
文摘深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追尾事故数据为研究对象,将原始数据按照7∶3随机分为训练集和测试集。在训练集数据上,利用生成式插补网络(Generative Adversarial Imputation Network,GAIN)实现对缺失数据的填补。为对比不同数据填补方法的效果,同时选择多重插补(Multiple Imputation by Chained Equations,MICE)算法、期望最大化(Expectation Maximization,EM)填充算法、缺失森林(MissForest)算法和K最近邻(K-Nearest Neighbor,KNN)算法对同一数据集进行数据填补,并基于填补前后变量方差变化比较不同填补算法对数据变异性的影响。在完成数据填补的基础上,构建LightGBM三分类事故严重程度影响因素分析模型。使用原始训练集数据,以及填补后的训练集数据分别训练模型,并使用未经填补的测试集数据检验模型预测效果。结果表明,经缺失值填补后,模型性能得到一定改善,使用GAIN填补数据集训练的模型,相较于原始数据训练的模型,准确率提高了6.84%,F1提高了4.61%,AUC(Area Under the Curve)提高了10.09%,且改善效果优于其他4种填补方法。
基金supports from the National Natural Science Foundation of China(under Grants No.72073105,71903002,and 71774122)the Natural Science Foundation of Anhui Province,China(under Grant No.1908085QG309)are greatly acknowledged.
文摘This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.
文摘This article is a compilation of teen driver crash contributing factors typically extractable from the crash data collection system in the United States.Tremendous research effort has been undertaken over the decades to comprehend teen driver crash risks,as teen drivers continue to be over-involved in crashes even when accounting for the driving exposure.This article presents the contexts of crash factors related to operating conditions,roadway,vehicle,and driver and their unique influences on teen driver crashes in terms of estimated risk,prevalence,and estimated likelihood mainly from descriptive and analytical studies.The key variables are selected based on the number of studies that considered each risk factor for analysis.The understanding of crash factors could be translated into graduated driver licensing and other teen driver safety programs.While the discussions were grounded in crash studies carried out in the United States,the insights gleaned from these studies hold the potential to offer valuable guidance to other countries.For example,the insights and discussions can serve as a catalyst for the development and improvement of driver education programs tailored to address the specific requirements and difficulties confronted by their teenage drivers.
文摘An important issue in analyzing accident blackspots is the estimation of severity levels of different types of accidents.This study aims to estimate the severity level of accidents in Bahrain using crash costs.These crash costs were calculated by the Human Capital Approach(HCA)and total reported costs from the victims.The data was collected from the General Directorate of Traffic,insurance companies,Ministry of Works(MoW)and Ministry of Health.It was found,from the survey responses,that there was no significant effect of victim characteristics on the total cost of the accidents.The severity levels were found to be higher than those found in previous literature or adopted by local authorities which could be attributed to the economic conditions of Bahrain.Moreover,the weights found by both approaches were different from each other.Therefore,it is recommended to use the HCA approach due to its comprehensive calculations involving future costs.