During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membra...During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.展开更多
BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diar...BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.展开更多
According to the latest global cancer statistics,colorectal cancer(CRC)has emerged as the third most prevalent malignant tumor across the globe.In recent decades,the medical field has implemented several levels of CRC...According to the latest global cancer statistics,colorectal cancer(CRC)has emerged as the third most prevalent malignant tumor across the globe.In recent decades,the medical field has implemented several levels of CRC screening tests,encompassing fecal tests,endoscopic examinations,radiological examinations and blood tests.Previous studies have shown that leukocyte immunoglobulin-like receptor B2(LILRB2)is involved in inhibiting immune cell function,immune evasion,and promoting tumor progression in acute myeloid leukemia and nonsmall cell lung cancer.However,its interaction with CRC has not been reported yet.Recently,a study published in the World Journal of Gastroenterology revealed that LILRB2 and its ligand,angiopoietin-like protein 2,are markedly overexpressed in CRC.This overexpression is closely linked to tumor progression and is indicative of a poor prognosis.The study highlights the potential of utilizing the concentration of LILRB2 in serum as a promising biomarker for tumors.However,there is still room for discussion regarding the data processing and analysis in this research.展开更多
BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome(PI-IBS).γδT cells play a crucial role in ...BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome(PI-IBS).γδT cells play a crucial role in innate and adaptive immunity.Adenosine receptors expressed on the surface ofγδT cells participate in intestinal inflammation and immunity regulation.AIM To investigate the role ofγδT cell regulated by adenosine 2A receptor(A2AR)in PI-IBS.METHODS The PI-IBS mouse model has been established with Trichinella spiralis(T.spiralis)infection.The intestinal A2AR and A2AR inγδT cells were detected by immunohistochemistry,and the inflammatory cytokines were measured by western blot.The role of A2AR on the isolatedγδT cells,including proliferation,apoptosis,and cytokine production,were evaluated in vitro.Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction(RT-PCR).The animals were administered with A2AR agonist,or A2AR antagonist.Besides,γδT cells were also injected back into the animals,and the parameters described above were examined,as well as the clinical features.Furthermore,the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR.RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression(P<0.05),and suppression of A2AR enhanced PI-IBS clinical characteristics,indicated by the abdominal withdrawal reflex and colon transportation test.PI-IBS was associated with an increase in intestinal T cells,and cytokine levels of interleukin-1(IL-1),IL-6,IL-17A,and interferon-α(IFN-α).Also,γδT cells expressed A2AR in vitro and generated IL-1,IL-6,IL-17A,and IFN-α,which can be controlled by A2AR agonist and antagonist.Mechanistic studies demonstrated that the A2AR antagonist improved the function ofγδT cells through the PKA/CREB/NF-κB signaling pathway.CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function ofγδT cells via the PKA/CREB/NF-κB signaling pathway.展开更多
Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was app...Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.展开更多
AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory c...AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory cytokines. METHODS: Gastric lesions were produced by oral gavage of aspirin (200 mg/kg) and HCI (0.15 mol/L, 8.0 mL/kg). 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2- ynyl}-cyclohexanecarboxylic acid methyl ester (ATL-146e, 2.5-5μg/kg, IP) was injected 30 min before the administration of aspirin. Tissue myeloperoxidase (MPO) concentration in gastric mucosa was measured as an index of neutrophil infiltration. Gastric mucosal concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by ELISA. Also, we examined the effect of ATL-146e on tissue prostaglandin E2 (PGE2) production and gastric secretion. RESULTS: Intragastric administration of aspirin induced multiple hemorrhagic erosions in rat gastric mucosa. The total length of gastric erosions (ulcer index) in control rats was 29.8±7.75 mm and was reduced to 3.8±1.42 mm alter pretreatment with 5.0 g/kg ATL-146e (P〈 0.01). The gastric contents of MPO and pro-inflammatory cytokines were all increased after the administration of aspirin and reduced to nearly normal levels by ATL-146e. Gastric mucosal PGE2 concentration was not affected by intraperitoneal injection of ATL-146e. CONCLUSION: The specific adenosine A2A receptor agonist, ATL-146e, has potent anti-ulcer effects presumably mediated by its anti-inflammatory properties.展开更多
BACKGROUND Post-infectious irritable bowel syndrome(PI-IBS)is generally regarded as a functional disease.Several recent studies have reported the involvement of lowgrade inflammation and immunological dysfunction in P...BACKGROUND Post-infectious irritable bowel syndrome(PI-IBS)is generally regarded as a functional disease.Several recent studies have reported the involvement of lowgrade inflammation and immunological dysfunction in PI-IBS.T helper 17(Th17)polarization occurs in IBS.Adenosine and its receptors participate in intestinal inflammation and immune regulation.AIM To investigate the role of Th17 polarization of CD4+T cells regulated by adenosine 2A receptor(A2AR)in PI-IBS.METHODS A PI-IBS model was established by infecting mice with Trichinella spiralis.The intestinal A2AR and CD4+T lymphocytes were detected by immunohistochemistry,and the inflammatory cytokines were detected by enzyme-linked immunoassay.CD4+T lymphocytes present in the animal’s spleen were separated and cultured with or without A2AR agonist and antagonist.Western blotting and real-time quantitative polymerase chain reaction were performed to determine the effect of A2AR on the cells and intestinal tissue.Cytokine production was determined.The protein and mRNA levels of A2AR associated signaling pathway molecules were also evaluated.Furthermore,A2AR agonist and antagonist were injected into the mouse model and the clinical features were observed.RESULTS The PI-IBS mouse model showed increased expression of ATP and A2AR(P<0.05),and inhibition of A2AR improved the clinical features in PI-IBS,including the abdominal withdrawal reflex and colon transportation test(P<0.05).The number of intestinal CD4+T cells and interleukin-17(IL-17)protein levels increased during PI-IBS,which was reversed by administration of the A2AR antagonist(P<0.05).CD4+T cells expressed A2AR and produced IL-17 in vitro,which was regulated by the A2AR agonist and antagonist.The A2AR antagonist increased the production of IL-17 by CD4+T cells via the Janus kinase-signal transducer and activator of transcriptionreceptor-related orphan receptorγsignaling pathway.CONCLUSION The results of the present study suggested that the upregulation of A2AR increases PI-IBS by promoting the Th17 polarization of CD4+T cells.展开更多
BACKGROUND Colorectal cancer(CRC)has become the second most deadly malignancy in the world,and the exploration of screening markers and precise therapeutic targets is urgent.Our previous research identified leukocyte ...BACKGROUND Colorectal cancer(CRC)has become the second most deadly malignancy in the world,and the exploration of screening markers and precise therapeutic targets is urgent.Our previous research identified leukocyte immunoglobulin-like receptor B2(LILRB2)protein as a characteristic protein of CRC,but the association between LILRB2 expression and clinicopathological features,the internal mechanism related to CRC progression,and screening diagnostic efficacy are not clear.Therefore,we hypothesized that LILRB2 is significantly highly expressed in CRC tissues,correlated with advanced stage and a poor prognosis,and could be used as a therapeutic target and potential screening biomarker for CRC.AIM To explore whether LILRB2 can be used as a potential therapeutic target and noninvasive screening biomarker for CRC.METHODS Patients who underwent radical surgery for CRC at China-Japan Friendship Hospital between February 2021 and October 2022 were included.Cancer and paracancerous tissues were collected to verify LILRB2 expression,and the association between LILRB2 expression and clinicopathological features was analysed.Serum was collected from CRC patients,adenoma patients and healthy controls during the same period to assess the diagnostic value of LILRB2 as a noninvasive screening biomarker,and its diagnostic value was further compared with that of the traditional markers carcinoembryonic antigen(CEA)and carbohydrate antigen 19-9(CA19-9).RESULTS A total of 58 CRC patients were included,and LILRB2 protein was significantly overexpressed in cancer tissues compared with paracancerous tissues(P<0.001).Angiopoietin-like protein 2(ANGPTL2)protein,as the ligand of LILRB2,was synergistically overexpressed in CRC tissues(P<0.001),and overexpression of LILRB2 and ANGPTL2 protein was significantly correlated with poor to moderate differentiation,vascular involvement,lymph node metastasis,distant metastasis,advanced tumor-node-metastasis stage and a poor prognosis(P<0.05),which suggested that LILRB2 and ANGPTL2 are closely associated with CRC progression.In addition,serum LILRB2 concentrations increased stepwise in healthy individuals,adenoma patients and CRC patients with statistically significant differences.The sensitivity of serum LILRB2 for the diagnosis of CRC was 89.74%,the specificity was 88.89%,the area under the curve was 0.95,and the diagnostic efficacy was better than that of conventional CEA and CA19-9.CONCLUSION LILRB2 protein can be used as a potential novel therapeutic target and noninvasive screening biomarker for CRC,which is beneficial for early screening and precise treatment.展开更多
Typical antipsychotics, potent D2 dopamine receptor antagonists, are the most commonly used drugs in the treatment of bipolar disorders. In the central nervous system, the discovery of antagonistic interactions betwee...Typical antipsychotics, potent D2 dopamine receptor antagonists, are the most commonly used drugs in the treatment of bipolar disorders. In the central nervous system, the discovery of antagonistic interactions between A2A adenosine receptors and D2 dopamine receptors suggests that the adenosine system may be involved in the pathogenesis of different psychiatric disorders and in the therapeutic effectiveness of antipsychotic drugs. Previously, we have demonstrated an increase in A2A receptor expression and agonist affinity in platelets from psychotic patients treated with haloperidol. This result suggests that there is also a structural and functional interaction between A2A and D2 receptors in peripheral cells. In this work, we investigated the effect of different doses of typical drugs on A2A adenosine receptor binding and correlated these parameters with the severity of symptoms. We demonstrated, for the first time, that there was a strong correlation between A2A receptor affinity constant values (Kd) and drug doses in psychotic patients with a moderate severity of illness and moderate psychotic symptoms. The correlation was completely lost in patients with severe illness and severe psychotic symptoms. These results demonstrated that in platelets of patients affected by psychosis, typical antipsychotics modulated A2A receptor binding parameters;this regulation is dependent on the degree of D2 receptor occupancy in relation to the severity of psychotic symptoms, suggesting A2A receptors are a peripheral marker for individual therapy effectiveness.展开更多
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been c...Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been clinically pursued for the last 2 decades,leading to final approval of the istradefylline,an A2AR antagonist,for the treatment of OFF-Parkinson's disease(PD)patients.The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury(TBI),namely neuroprotection or improving cognition.In this review,we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment.We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity,and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation.Moreover,we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients.Collectively,the convergence of clinical,epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.展开更多
The P2X7 receptor mRNA and proteins in guinea-pig dorsal root ganglia (DRG) were studied by using RT-PCR and immunohistochemistry. The co-localization of P2X7 receptor with four cytochemical markers, the neurofilame...The P2X7 receptor mRNA and proteins in guinea-pig dorsal root ganglia (DRG) were studied by using RT-PCR and immunohistochemistry. The co-localization of P2X7 receptor with four cytochemical markers, the neurofilament protein NF200, S100, substance P and isolectin t34 (IB4) binding glyco-conjugates, were also examined. It was found that P2X7 receptor immunoreactivity (P2X7 R-IR) was present mostly in large-and medium-sized DRG neurons (62%±9% and 36%±6% respectively in all P2X7 R-IR neurons). All the P2X7 R-IR neurons were also NF200 and S100 immunopositive. However, in a small number of NF200 or S100 immunopositive neurons no P2XTR-IR was detectable. All the IB4-positive or substance P-immunopositive neurons had no P2X7 R-IR. These results demonstrate that P2X7 receptors are expressed in a large subpopulation of DRG neurons and they may play a role in the transduction of specific peripheral sensory signals.展开更多
Tumors survive by creating a tumor microenvironment(TME)that suppresses antitumor immunity.The TME suppresses the immune system by limiting antigen presentation,inhibiting lymphocyte and natural killer(NK)cell activat...Tumors survive by creating a tumor microenvironment(TME)that suppresses antitumor immunity.The TME suppresses the immune system by limiting antigen presentation,inhibiting lymphocyte and natural killer(NK)cell activation,and facilitating T cell exhaustion.Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies,and their blockade extends the survival of some but not all cancer patients.Extracellular adenosine triphosphate(ATP)is abundant in inflamed tumors,and its metabolite,adenosine(ADO),is a driver of immunosuppression mediated by adenosine A2A receptors(A2AR)and adenosine A2B receptors(A2BR)found on tumor-associated lymphoid and myeloid cells.This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.展开更多
The adenosine subfamily G protein-coupled receptors A_(2A)R and A_(2B)R have been identified as promising cancer immunotherapy candidates.One of the A_(2A)R/A_(2B)R dual antagonists,AB928,has progressed to a phaseⅡcl...The adenosine subfamily G protein-coupled receptors A_(2A)R and A_(2B)R have been identified as promising cancer immunotherapy candidates.One of the A_(2A)R/A_(2B)R dual antagonists,AB928,has progressed to a phaseⅡclinical trial to treat rectal cancer.However,the precise mechanism underlying its dual-antagonistic properties remains elusive.Herein,we report crystal structures of the A_(2A)R complexed with AB928 and a selective A_(2A)R antagonist 2-118.The structures revealed a common binding mode on A_(2A)R,wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets.In contrast,the cAMP assay and A_(2A)R and A_(2B)R molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A_(2B)R.Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A_(2B)R pocket,while 2-118 did not due to intrinsic differences.This disparity potentially accounted for the difference in inhibitory efficacy between A_(2B)R and A_(2A)R.This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A_(2A)R/A_(2B)R for cancer therapy.展开更多
AIM: To examine the contribution of toll-like receptors(TLRs) expression and activation to the prolonged inflammation often seen in human diabetic wounds.METHODS: Debridement wound tissue was collected from diabetic p...AIM: To examine the contribution of toll-like receptors(TLRs) expression and activation to the prolonged inflammation often seen in human diabetic wounds.METHODS: Debridement wound tissue was collected from diabetic patients with informed consent. Total RNA and protein were isolated and subjected to real-time polymerase chain reaction and Western blot analyses. RESULTS: TLR1, 2, 4, and 6 mRNA expressions were increased significantly in wounds of diabetic patients compared with non-diabetic wounds(P 【 0.05). MyD88 protein expression was significantly increased in diabetic wounds compared to non-diabetic wounds. Interleukin-1beta, tumor necrosis factor-alpha concentration nuclear factor-kappa B activation, and thiobarbituric acid reactive substances were increased in diabetic wounds compared to non-diabetic wounds(P 【 0.01). CONCLUSION: Collectively, our novel findings show that increased TLR expression, signaling, and activation may contribute to the hyper inflammation in the human diabetic wounds.展开更多
AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP...AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot. RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2. CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect.展开更多
AIM: To investigate the relationship between serum soluble interleukin-2 receptor (sIL-2R) level and anti-HBc in patients with chronic hepatitis B virus (HBV) infection. METHODS: Sera from 100 patients with chro...AIM: To investigate the relationship between serum soluble interleukin-2 receptor (sIL-2R) level and anti-HBc in patients with chronic hepatitis B virus (HBV) infection. METHODS: Sera from 100 patients with chronic HBV infection and 30 healthy controls were included in this study. The patients were divided into group A [HBsAg (+), HBeAg (+) and anti-HBc (+), n = 50] and group B [HBsAg (+), HBeAg (+) and anti-HBc (-), n = 50]. sIL-2R levels were determined using ELISA. HBV DNA and alanine aminotransferase (ALT) were also detected. RESULTS: Serum sIL-2R levels were significantly higher in patients with chronic HBV infection than in healthy controls. Moreover, serum sIL-2R levels were significantly higher in patients with HBsAg (+), HBeAg (+) and antiHBc (+) (976.56±213.51×10^3 U/L) than in patients with HBsAg (+), HBeAg (+) and anti-HBc (-) (393.41±189.54 ×10^3 U/L, P〈 0.01). A significant relationship was found between serum sIL-2R and ALT levels (P〈 0.01) in patients with chronic HBV infection, but there was no correlation between sIL-2R and HBV DNA levels. The anti-HBc status was significantly related to the age of patients (P〈 0.01). CONCLUSION: The high sIL-2R level is related to positive anti-HBc in chronic hepatitis B patients. Positive anti-HBc may be related to T-lymphocyte activation and negative anti-HBc may imply immune tolerance in these patients.展开更多
Type 2 diabetes is one of the most prevalent and serious metabolic diseases.Under diabetic conditions,chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreaticβ-cell function,which lea...Type 2 diabetes is one of the most prevalent and serious metabolic diseases.Under diabetic conditions,chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreaticβ-cell function,which leads to the aggravation of type 2 diabetes.Although such phenomena are well known as glucose toxicity,its molecular mechanism remains unclear.In this review article,we describe the possible molecular mechanism forβ-cell dysfunction found in type 2 diabetes,focusing on(1)oxidative stress,(2)pancreatic transcription factors(PDX-1 and MafA)and(3)incretin receptors(GLP-1 and GIP receptors).Under such conditions,nuclear expression levels of PDX-1 and MafA are decreased,which leads to suppression of insulin biosynthesis and secretion.In addition,expression levels of GLP-1 and GIP receptors are decreased,which likely contributes to the impaired incretin effects found in diabetes.Taken together,it is likely that downregulation of pancreatic transcription factors(PDX-1and MafA)and down-regulation of incretin receptors(GLP-1 and GIP receptors)explain,at least in part,the molecular mechanism forβ-cell dysfunction found in type 2 diabetes.展开更多
Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography ...Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.展开更多
Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in c...Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.展开更多
Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B e...Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.展开更多
基金supported by University of Florence RICATEN 2023 to EC.Grant/Award Numbers 58514_InternazionalizzazioneUniversity of Florence,to EC.Parkinson’s UK,Grant/Award Number:H-0902 to AJGWellcome Trust,Grant/Award Number:0926/Z/10/Z to AJG。
文摘During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.
基金The Health Commission of Jinshan District,Shanghai,China,No.JSKJ-KTMS-2019-01The Youth Research Foundation of Jinshan Hospital of Fudan University,No.JYQN-JC-202101 and No.JYQN-JC-202216The Reserve Discipline Construction of Jinshan Hospital of Fudan University,No.HBXK-2021-2.
文摘BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.
文摘According to the latest global cancer statistics,colorectal cancer(CRC)has emerged as the third most prevalent malignant tumor across the globe.In recent decades,the medical field has implemented several levels of CRC screening tests,encompassing fecal tests,endoscopic examinations,radiological examinations and blood tests.Previous studies have shown that leukocyte immunoglobulin-like receptor B2(LILRB2)is involved in inhibiting immune cell function,immune evasion,and promoting tumor progression in acute myeloid leukemia and nonsmall cell lung cancer.However,its interaction with CRC has not been reported yet.Recently,a study published in the World Journal of Gastroenterology revealed that LILRB2 and its ligand,angiopoietin-like protein 2,are markedly overexpressed in CRC.This overexpression is closely linked to tumor progression and is indicative of a poor prognosis.The study highlights the potential of utilizing the concentration of LILRB2 in serum as a promising biomarker for tumors.However,there is still room for discussion regarding the data processing and analysis in this research.
基金Supported by National Natural Science Foundation of China,No.81160057,No.81860102,and No.82060102Natural Science Foundation of Hainan Province,High-level Personnel Program,No.821RC1116+1 种基金Research Project of Health Industry in Hainan Province,No.20A200066Hainan Provincial Clinical Medical Center.
文摘BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome(PI-IBS).γδT cells play a crucial role in innate and adaptive immunity.Adenosine receptors expressed on the surface ofγδT cells participate in intestinal inflammation and immunity regulation.AIM To investigate the role ofγδT cell regulated by adenosine 2A receptor(A2AR)in PI-IBS.METHODS The PI-IBS mouse model has been established with Trichinella spiralis(T.spiralis)infection.The intestinal A2AR and A2AR inγδT cells were detected by immunohistochemistry,and the inflammatory cytokines were measured by western blot.The role of A2AR on the isolatedγδT cells,including proliferation,apoptosis,and cytokine production,were evaluated in vitro.Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction(RT-PCR).The animals were administered with A2AR agonist,or A2AR antagonist.Besides,γδT cells were also injected back into the animals,and the parameters described above were examined,as well as the clinical features.Furthermore,the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR.RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression(P<0.05),and suppression of A2AR enhanced PI-IBS clinical characteristics,indicated by the abdominal withdrawal reflex and colon transportation test.PI-IBS was associated with an increase in intestinal T cells,and cytokine levels of interleukin-1(IL-1),IL-6,IL-17A,and interferon-α(IFN-α).Also,γδT cells expressed A2AR in vitro and generated IL-1,IL-6,IL-17A,and IFN-α,which can be controlled by A2AR agonist and antagonist.Mechanistic studies demonstrated that the A2AR antagonist improved the function ofγδT cells through the PKA/CREB/NF-κB signaling pathway.CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function ofγδT cells via the PKA/CREB/NF-κB signaling pathway.
文摘Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.
文摘AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory cytokines. METHODS: Gastric lesions were produced by oral gavage of aspirin (200 mg/kg) and HCI (0.15 mol/L, 8.0 mL/kg). 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2- ynyl}-cyclohexanecarboxylic acid methyl ester (ATL-146e, 2.5-5μg/kg, IP) was injected 30 min before the administration of aspirin. Tissue myeloperoxidase (MPO) concentration in gastric mucosa was measured as an index of neutrophil infiltration. Gastric mucosal concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by ELISA. Also, we examined the effect of ATL-146e on tissue prostaglandin E2 (PGE2) production and gastric secretion. RESULTS: Intragastric administration of aspirin induced multiple hemorrhagic erosions in rat gastric mucosa. The total length of gastric erosions (ulcer index) in control rats was 29.8±7.75 mm and was reduced to 3.8±1.42 mm alter pretreatment with 5.0 g/kg ATL-146e (P〈 0.01). The gastric contents of MPO and pro-inflammatory cytokines were all increased after the administration of aspirin and reduced to nearly normal levels by ATL-146e. Gastric mucosal PGE2 concentration was not affected by intraperitoneal injection of ATL-146e. CONCLUSION: The specific adenosine A2A receptor agonist, ATL-146e, has potent anti-ulcer effects presumably mediated by its anti-inflammatory properties.
基金Supported by National Natural Science Foundation of China,No.81160057,No.81860102,and No.82060102.
文摘BACKGROUND Post-infectious irritable bowel syndrome(PI-IBS)is generally regarded as a functional disease.Several recent studies have reported the involvement of lowgrade inflammation and immunological dysfunction in PI-IBS.T helper 17(Th17)polarization occurs in IBS.Adenosine and its receptors participate in intestinal inflammation and immune regulation.AIM To investigate the role of Th17 polarization of CD4+T cells regulated by adenosine 2A receptor(A2AR)in PI-IBS.METHODS A PI-IBS model was established by infecting mice with Trichinella spiralis.The intestinal A2AR and CD4+T lymphocytes were detected by immunohistochemistry,and the inflammatory cytokines were detected by enzyme-linked immunoassay.CD4+T lymphocytes present in the animal’s spleen were separated and cultured with or without A2AR agonist and antagonist.Western blotting and real-time quantitative polymerase chain reaction were performed to determine the effect of A2AR on the cells and intestinal tissue.Cytokine production was determined.The protein and mRNA levels of A2AR associated signaling pathway molecules were also evaluated.Furthermore,A2AR agonist and antagonist were injected into the mouse model and the clinical features were observed.RESULTS The PI-IBS mouse model showed increased expression of ATP and A2AR(P<0.05),and inhibition of A2AR improved the clinical features in PI-IBS,including the abdominal withdrawal reflex and colon transportation test(P<0.05).The number of intestinal CD4+T cells and interleukin-17(IL-17)protein levels increased during PI-IBS,which was reversed by administration of the A2AR antagonist(P<0.05).CD4+T cells expressed A2AR and produced IL-17 in vitro,which was regulated by the A2AR agonist and antagonist.The A2AR antagonist increased the production of IL-17 by CD4+T cells via the Janus kinase-signal transducer and activator of transcriptionreceptor-related orphan receptorγsignaling pathway.CONCLUSION The results of the present study suggested that the upregulation of A2AR increases PI-IBS by promoting the Th17 polarization of CD4+T cells.
基金the National Key Development Plan for Precision Medicine Research,No.2017YFC0910002.
文摘BACKGROUND Colorectal cancer(CRC)has become the second most deadly malignancy in the world,and the exploration of screening markers and precise therapeutic targets is urgent.Our previous research identified leukocyte immunoglobulin-like receptor B2(LILRB2)protein as a characteristic protein of CRC,but the association between LILRB2 expression and clinicopathological features,the internal mechanism related to CRC progression,and screening diagnostic efficacy are not clear.Therefore,we hypothesized that LILRB2 is significantly highly expressed in CRC tissues,correlated with advanced stage and a poor prognosis,and could be used as a therapeutic target and potential screening biomarker for CRC.AIM To explore whether LILRB2 can be used as a potential therapeutic target and noninvasive screening biomarker for CRC.METHODS Patients who underwent radical surgery for CRC at China-Japan Friendship Hospital between February 2021 and October 2022 were included.Cancer and paracancerous tissues were collected to verify LILRB2 expression,and the association between LILRB2 expression and clinicopathological features was analysed.Serum was collected from CRC patients,adenoma patients and healthy controls during the same period to assess the diagnostic value of LILRB2 as a noninvasive screening biomarker,and its diagnostic value was further compared with that of the traditional markers carcinoembryonic antigen(CEA)and carbohydrate antigen 19-9(CA19-9).RESULTS A total of 58 CRC patients were included,and LILRB2 protein was significantly overexpressed in cancer tissues compared with paracancerous tissues(P<0.001).Angiopoietin-like protein 2(ANGPTL2)protein,as the ligand of LILRB2,was synergistically overexpressed in CRC tissues(P<0.001),and overexpression of LILRB2 and ANGPTL2 protein was significantly correlated with poor to moderate differentiation,vascular involvement,lymph node metastasis,distant metastasis,advanced tumor-node-metastasis stage and a poor prognosis(P<0.05),which suggested that LILRB2 and ANGPTL2 are closely associated with CRC progression.In addition,serum LILRB2 concentrations increased stepwise in healthy individuals,adenoma patients and CRC patients with statistically significant differences.The sensitivity of serum LILRB2 for the diagnosis of CRC was 89.74%,the specificity was 88.89%,the area under the curve was 0.95,and the diagnostic efficacy was better than that of conventional CEA and CA19-9.CONCLUSION LILRB2 protein can be used as a potential novel therapeutic target and noninvasive screening biomarker for CRC,which is beneficial for early screening and precise treatment.
文摘Typical antipsychotics, potent D2 dopamine receptor antagonists, are the most commonly used drugs in the treatment of bipolar disorders. In the central nervous system, the discovery of antagonistic interactions between A2A adenosine receptors and D2 dopamine receptors suggests that the adenosine system may be involved in the pathogenesis of different psychiatric disorders and in the therapeutic effectiveness of antipsychotic drugs. Previously, we have demonstrated an increase in A2A receptor expression and agonist affinity in platelets from psychotic patients treated with haloperidol. This result suggests that there is also a structural and functional interaction between A2A and D2 receptors in peripheral cells. In this work, we investigated the effect of different doses of typical drugs on A2A adenosine receptor binding and correlated these parameters with the severity of symptoms. We demonstrated, for the first time, that there was a strong correlation between A2A receptor affinity constant values (Kd) and drug doses in psychotic patients with a moderate severity of illness and moderate psychotic symptoms. The correlation was completely lost in patients with severe illness and severe psychotic symptoms. These results demonstrated that in platelets of patients affected by psychosis, typical antipsychotics modulated A2A receptor binding parameters;this regulation is dependent on the degree of D2 receptor occupancy in relation to the severity of psychotic symptoms, suggesting A2A receptors are a peripheral marker for individual therapy effectiveness.
基金supported in part by the grants from the National Natural Science Foundation of China[grant numbers 81771176 for Zhao Y,82150710558 and 82151308 for Chen JF]by the Startup Funds from the Oujiang Laboratory (the Zhejiang Provincial Key Laboratory for Regenerative Medicine and Eye-Brain Disorders)[grant number OJQDSP2022007 for Chen JF]Wenzhou,China。
文摘Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been clinically pursued for the last 2 decades,leading to final approval of the istradefylline,an A2AR antagonist,for the treatment of OFF-Parkinson's disease(PD)patients.The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury(TBI),namely neuroprotection or improving cognition.In this review,we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment.We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity,and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation.Moreover,we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients.Collectively,the convergence of clinical,epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
文摘The P2X7 receptor mRNA and proteins in guinea-pig dorsal root ganglia (DRG) were studied by using RT-PCR and immunohistochemistry. The co-localization of P2X7 receptor with four cytochemical markers, the neurofilament protein NF200, S100, substance P and isolectin t34 (IB4) binding glyco-conjugates, were also examined. It was found that P2X7 receptor immunoreactivity (P2X7 R-IR) was present mostly in large-and medium-sized DRG neurons (62%±9% and 36%±6% respectively in all P2X7 R-IR neurons). All the P2X7 R-IR neurons were also NF200 and S100 immunopositive. However, in a small number of NF200 or S100 immunopositive neurons no P2XTR-IR was detectable. All the IB4-positive or substance P-immunopositive neurons had no P2X7 R-IR. These results demonstrate that P2X7 receptors are expressed in a large subpopulation of DRG neurons and they may play a role in the transduction of specific peripheral sensory signals.
文摘Tumors survive by creating a tumor microenvironment(TME)that suppresses antitumor immunity.The TME suppresses the immune system by limiting antigen presentation,inhibiting lymphocyte and natural killer(NK)cell activation,and facilitating T cell exhaustion.Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies,and their blockade extends the survival of some but not all cancer patients.Extracellular adenosine triphosphate(ATP)is abundant in inflamed tumors,and its metabolite,adenosine(ADO),is a driver of immunosuppression mediated by adenosine A2A receptors(A2AR)and adenosine A2B receptors(A2BR)found on tumor-associated lymphoid and myeloid cells.This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.
基金supported by the National Key Research and Development Program of China(2018YFA0507001)the Basic Research Program of Science and Technology Commission of Shanghai Municipality(21JC1402400)+1 种基金the National Natural Science Foundation of China(32171215,81972828,82172644,82273857 and 81830083)the National Key Scientific Infrastructure for Translational Medicine(Shanghai)(TMSK-2021-120)。
文摘The adenosine subfamily G protein-coupled receptors A_(2A)R and A_(2B)R have been identified as promising cancer immunotherapy candidates.One of the A_(2A)R/A_(2B)R dual antagonists,AB928,has progressed to a phaseⅡclinical trial to treat rectal cancer.However,the precise mechanism underlying its dual-antagonistic properties remains elusive.Herein,we report crystal structures of the A_(2A)R complexed with AB928 and a selective A_(2A)R antagonist 2-118.The structures revealed a common binding mode on A_(2A)R,wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets.In contrast,the cAMP assay and A_(2A)R and A_(2B)R molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A_(2B)R.Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A_(2B)R pocket,while 2-118 did not due to intrinsic differences.This disparity potentially accounted for the difference in inhibitory efficacy between A_(2B)R and A_(2A)R.This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A_(2A)R/A_(2B)R for cancer therapy.
文摘AIM: To examine the contribution of toll-like receptors(TLRs) expression and activation to the prolonged inflammation often seen in human diabetic wounds.METHODS: Debridement wound tissue was collected from diabetic patients with informed consent. Total RNA and protein were isolated and subjected to real-time polymerase chain reaction and Western blot analyses. RESULTS: TLR1, 2, 4, and 6 mRNA expressions were increased significantly in wounds of diabetic patients compared with non-diabetic wounds(P 【 0.05). MyD88 protein expression was significantly increased in diabetic wounds compared to non-diabetic wounds. Interleukin-1beta, tumor necrosis factor-alpha concentration nuclear factor-kappa B activation, and thiobarbituric acid reactive substances were increased in diabetic wounds compared to non-diabetic wounds(P 【 0.01). CONCLUSION: Collectively, our novel findings show that increased TLR expression, signaling, and activation may contribute to the hyper inflammation in the human diabetic wounds.
基金Supported by Grant from National Key New Drug Creation Project of China, No. 2009ZX09102
文摘AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot. RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2. CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect.
基金Supported by the Namral Science Foundation of Gansu Province,No.ZR-96-078
文摘AIM: To investigate the relationship between serum soluble interleukin-2 receptor (sIL-2R) level and anti-HBc in patients with chronic hepatitis B virus (HBV) infection. METHODS: Sera from 100 patients with chronic HBV infection and 30 healthy controls were included in this study. The patients were divided into group A [HBsAg (+), HBeAg (+) and anti-HBc (+), n = 50] and group B [HBsAg (+), HBeAg (+) and anti-HBc (-), n = 50]. sIL-2R levels were determined using ELISA. HBV DNA and alanine aminotransferase (ALT) were also detected. RESULTS: Serum sIL-2R levels were significantly higher in patients with chronic HBV infection than in healthy controls. Moreover, serum sIL-2R levels were significantly higher in patients with HBsAg (+), HBeAg (+) and antiHBc (+) (976.56±213.51×10^3 U/L) than in patients with HBsAg (+), HBeAg (+) and anti-HBc (-) (393.41±189.54 ×10^3 U/L, P〈 0.01). A significant relationship was found between serum sIL-2R and ALT levels (P〈 0.01) in patients with chronic HBV infection, but there was no correlation between sIL-2R and HBV DNA levels. The anti-HBc status was significantly related to the age of patients (P〈 0.01). CONCLUSION: The high sIL-2R level is related to positive anti-HBc in chronic hepatitis B patients. Positive anti-HBc may be related to T-lymphocyte activation and negative anti-HBc may imply immune tolerance in these patients.
文摘Type 2 diabetes is one of the most prevalent and serious metabolic diseases.Under diabetic conditions,chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreaticβ-cell function,which leads to the aggravation of type 2 diabetes.Although such phenomena are well known as glucose toxicity,its molecular mechanism remains unclear.In this review article,we describe the possible molecular mechanism forβ-cell dysfunction found in type 2 diabetes,focusing on(1)oxidative stress,(2)pancreatic transcription factors(PDX-1 and MafA)and(3)incretin receptors(GLP-1 and GIP receptors).Under such conditions,nuclear expression levels of PDX-1 and MafA are decreased,which leads to suppression of insulin biosynthesis and secretion.In addition,expression levels of GLP-1 and GIP receptors are decreased,which likely contributes to the impaired incretin effects found in diabetes.Taken together,it is likely that downregulation of pancreatic transcription factors(PDX-1and MafA)and down-regulation of incretin receptors(GLP-1 and GIP receptors)explain,at least in part,the molecular mechanism forβ-cell dysfunction found in type 2 diabetes.
基金supported by National Natural Science Foundation of China,No. 30500482
文摘Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.
基金supported by a grant from the National Natural Science Foundation of China (No. 81001237)
文摘Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.
基金the Natural Science Foundation of Guangdong Province,No.07000059the Science and Technology Development Program of Guangzhou,No.2010Y1-C301the Science and Technology Development Program of Guangdong Province,No.2010B031600123
文摘Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.