期刊文献+
共找到84,904篇文章
< 1 2 250 >
每页显示 20 50 100
Changes of melatonin and its receptors in synchronizing turbot(Scophthalmus maximus)seasonal reproduction and maturation rhythm 被引量:1
1
作者 Chunyan Zhao Shihong Xu +5 位作者 Yifan Liu Chengcheng Feng Yongshuang Xiao Yanfeng Wang Qinghua Liu Jun Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第1期84-98,共15页
In most fish,reproduction is seasonal or periodic under the suitable conditions.In turbot(Scophthalmus maximus)farms,one of the most economically important marine flatfish species,changes in daylength could cause chan... In most fish,reproduction is seasonal or periodic under the suitable conditions.In turbot(Scophthalmus maximus)farms,one of the most economically important marine flatfish species,changes in daylength could cause changes in the spawning time.In this study,to characterize the regulation of reproductive physiology following light signals,three melatonin receptors(Mtnr)investigated in turbot were named sm Mtnr1,sm Mtnr2,and sm Mtnr1 c.Distinct expression profiles demonstrated that Mtnr m RNAs were concentrated in the brain(as detected in the hypothalamus(Hy)and mesencephalon(Me)),gonad and eye.The most abundant Mtnr1 and Mtnr2 m RNA expression levels were detected in the central nervous system at the beginning of the breeding season,suggesting that Mtnr1 and Mtnr2 may play vital roles in the regulation of turbot gonadal development.In addition,the melatonin profiles gradually increased and reached to the highest level at the spawning stage,indicating that melatonin is a potent hormone in the regulation of fish oocyte growth and maturation.The results of this study suggested that melatonin is the primary factor that transduces the light signal and regulates the physiological functions of turbot seasonal reproduction.Moreover,the results of this study may establish a foundation for further research seeking to identify fish melatonin receptors involved in the gonadal development and gamete maturation. 展开更多
关键词 TURBOT brain melatonin melatonin receptors seasonal reproductive development
下载PDF
UFLC‑PDA‑MS/MS Profling of Seven Uncaria Species Integrated with Melatonin/5‑Hydroxytryptamine Receptors Agonistic Assay 被引量:1
2
作者 Jian-Gang Zhang Xiao-Yan Huang +2 位作者 Yun-Bao Ma Ji-Jun Chen Chang-An Geng 《Natural Products and Bioprospecting》 CAS 2020年第1期23-36,共14页
Uncariae Ramulus Cum Uncis(Gou-Teng),the dried hook-bearing stems of several Uncaria plants(Rubiaceae),is a wellknown herbal medicine in China.The clinical application of Gou-Teng is bewildered for the morphological a... Uncariae Ramulus Cum Uncis(Gou-Teng),the dried hook-bearing stems of several Uncaria plants(Rubiaceae),is a wellknown herbal medicine in China.The clinical application of Gou-Teng is bewildered for the morphological and chemical similarity between diferent species.In order to discern their chemical and biological diference,an ultra-fast liquid chromatography equipped with ion trap time-of-fight mass spectrometry(UFLC-IT/TOF-MS)combining with melatonin(MT1 and MT2)and 5-hydroxytryptamine(5-HT1A and 5-HT2C)receptors agonistic assay in vitro was conducted on seven Uncaria species.As a result,57 compounds including 35 indole alkaloids,ten favonoids,fve triterpenoids,fve chlorogenic analogues,and two other compounds were characterized based on their MS/MS patterns and UV absorptions.Specifcally,cadambine-type and corynanthein-type alkaloids were exclusively present in U.rhynchophylla and U.scandens,whereas corynoxine-type alkaloids were commonly detected in all the seven Uncaria plants.Three Uncaria species,U.rhynchophylla,U.macrophylla,and U.yunnanensis showed obviously agnostic activity on four neurotransmitter receptors(MT1,MT2,5-HT1A,and 5-HT_(2C)).This frst-time UFLCMS-IT-TOF analyses integrated with biological assay on seven Uncaria plants will provide scientifc viewpoints for the clinical application of Gou-Teng. 展开更多
关键词 Uncariae Ramulus Cum Uncis Uncaria plants LCMS-IT-TOF analyses melatonin and 5-hydroxytryptamine receptors
下载PDF
Olfactory receptors in neural regeneration in the central nervous system
3
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA NEURONS
下载PDF
Hepatoprotective actions of melatonin:Possible mediation by melatonin receptors 被引量:3
4
作者 Alexander M Mathes 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第48期6087-6097,共11页
Melatonin,the hormone of darkness and messenger of the photoperiod,is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ pro... Melatonin,the hormone of darkness and messenger of the photoperiod,is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone's intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo,and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis,hemorrhagic shock,ischemia/reperfusion,and in numerous models of toxic liver injury. Melatonin's influence on hepatic antioxidant enzymes and other potentially relevant pathways,such as nitric oxide signaling,hepatic cytokine and heat shock protein expression,are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection,this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy. 展开更多
关键词 Antioxidant enzymes HEMORRHAGIC shock HEPATOPROTECTION Ischemia LIVER LIVER function melatonin melatonin receptor Ramelteon Reperfusion Sepsis Toxic LIVER injury
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
5
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Melatonin Receptors Agonistic Activities of Phenols from Gastrodia elata 被引量:5
6
作者 Si‑Yue Chen Chang‑An Geng +1 位作者 Yun‑Bao Ma Ji‑Jun Chen 《Natural Products and Bioprospecting》 CAS 2019年第4期297-302,共6页
Gastrodia elata is a famous traditional Chinese herb with medicinal and edible application.In this study,three new polybenzyls,gastropolybenzylols G-I(1-3)were isolated from the EtOAc extract of G.elata.Their structur... Gastrodia elata is a famous traditional Chinese herb with medicinal and edible application.In this study,three new polybenzyls,gastropolybenzylols G-I(1-3)were isolated from the EtOAc extract of G.elata.Their structures were identified by extensive spectroscopic analyses involving HRESIMS,UV,IR,1D and 2D NMR.Compound 1 showed agonistic effects on MT1 and MT_(2) receptors with agonistic rates of 55.91±4.84%and 165.13±5.65%at the concentration of 0.5 mM,respectively,and an EC_(50) value of 76.24μM on MT_(2) receptor. 展开更多
关键词 Gastrodia elata Gastropolybenzylols melatonin receptors
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications 被引量:2
7
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Seasonal variation of melatonin secretion across various segments of the gastrointestinal tract in rats
8
作者 Yuxin Zhang Xuejie Huang +6 位作者 Yilu Peng Yuxi Liang Wenjing Zhang Yadong Cui Xiaoying Xu Xiuhua Hu Xiaoyan Liu 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期275-282,共8页
Objective:To investigate whether melatonin(MT)secretion in different parts of the gastrointestinal tract(GIT)exhibits seasonal variations and its correlation with immune regulation.Methods: Sixty Sprague-Dawley rats w... Objective:To investigate whether melatonin(MT)secretion in different parts of the gastrointestinal tract(GIT)exhibits seasonal variations and its correlation with immune regulation.Methods: Sixty Sprague-Dawley rats were divided into control and model groups,and the pineal gland was removed in the model group.Stomach,jejunum,ileum,and colon tissues were obtained during the spring equinox,summer solstice,beginning of autumn,autumn equinox,and winter solstice.The levels of MT,MT receptors(MR),arylalkylamine N-acetyltransferase(AANAT),hydroxyindole-O-methyltransferase(HIOMT),interleukin-2(IL-2),and interleukin-10(IL-10)in the GIT were measured using enzyme-linked immunosorbent assay.Results: Except for the stomach,the jejunum,ileum,and the colon showed seasonal tendencies in MT secretion.In the control group,MT secretion in the jejunum and ileum was the highest in the long summer,and colonic MT secretion was the highest in winter.In the model group,MT levels in the colon were highest in the summer.The seasonal rhythms of the MR,AANAT,HIOMT,IL-2,and IL-10 in the colon were roughly similar to those of MT,and changed accordingly after pinealectomy.Conclusions: Gastrointestinal MT secretion is related to seasonal changes,and MT secretion in each intestinal segment is influenced by different seasons.The biological effects of MT in the gut are inextricably linked to the mediation of MR,and a hormone-receptor linkage exists between MT and MR.The effect of seasonal changes on the gastrointestinal immune system may be mediated through the regulation of seasonal secretion of MT. 展开更多
关键词 melatonin Seasonal variations Pineal gland Gastrointestinal tract melatonin receptors
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
9
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
10
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
The Role of Toll-Like Receptors and Nuclear Factor κB p65 Protein in the Pathogenesis of Otitis Media
11
作者 Qingchen He Yongbo Zhu Bi Qiang 《Journal of Biosciences and Medicines》 2024年第10期246-257,共12页
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi... The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease. 展开更多
关键词 Otitis Media Toll-Like receptors Nuclear Factor κB p65 Signaling Pathway
下载PDF
Toll-like receptors 2 polymorphism is associated with psoriasis: A case-control study in the northern Chinese population
12
作者 Siyu Hao Yu Zhang +4 位作者 Anqi Yin Ying Lyu Nannan Tong Jiangtian Tian Yuzhen Li 《Frigid Zone Medicine》 2024年第2期96-101,共6页
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling... Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China. 展开更多
关键词 Toll-like receptors 2 PSORIASIS POLYMORPHISM SUSCEPTIBILITY
下载PDF
Nuclear receptors and pathogenesis of pancreatic cancer 被引量:12
13
作者 Simone Polvani Mirko Tarocchi +1 位作者 Sara Tempesti Andrea Galli 《World Journal of Gastroenterology》 SCIE CAS 2014年第34期12062-12081,共20页
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well ... Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. 展开更多
关键词 Peroxisome proliferator activated receptor Pancreatic intraepithelial neoplasia COUP-TFⅡ Nuclear receptors Orphan nuclear receptor Nuclear receptors 4A2 Nuclear receptors 2F2 Pancreatic cancer Retinoid X receptor Testicular receptor 3
下载PDF
Fluorescent probes for imaging and detection of plant hormones and their receptors
14
作者 Yiliang Chen Bo He +4 位作者 Mengxu Hu Jiawei Bao Wei Yan Xinya Han Yonghao Ye 《Advanced Agrochem》 2024年第1期83-98,共16页
Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant gro... Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant growth and development and acclimation to environmental changes.Since the biosynthesis,modification,transportation,and degradation of plant hormones in plants change with time and space,their content level and distribution are highly dynamic.To monitor the production,transport,perception,and distribution of phytohormones within undamaged tissues,we require qualitative and quantitative tools endowed with remarkably high temporal and spatial resolution.Fluorescent probes are regarded as excellent tools for widespread plant imaging because of their high sensitivity and selectivity,reproducibility,real-time in situ detection,and uncomplicated mechanism elucidation.In this review,we provide a systematical overview of the progress in the sensing and imaging of phytohormone fluorescent probes and fluorescently labeled phytohormones to their receptors in plants.Moreover,forthcoming viewpoints and possible applications of these fluorescent probes within the realm of plants are also presented.We hold the conviction that the new perspective brought by this paper can promote the development of fluorescent probes,enabling them to have better detection performance in plant hormone imaging. 展开更多
关键词 Plant hormones receptors Fluorescent probe VISUALIZATION
下载PDF
Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy 被引量:2
15
作者 Vicente Felipo 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第48期7737-7743,共7页
Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the ... Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE. 展开更多
关键词 Hepatic encephalopathy Glutamate receptors Neurological alterations Cognitive function Motor func-tion NMDA receptors Metabotropic glutamate receptors Nitric oxide CGMP
下载PDF
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage 被引量:1
16
作者 Lingxiao Zhu Hongchun Sun +8 位作者 Ranran Wang Congcong Guo Liantao Liu Yongjiang Zhang Ke Zhang Zhiying Bai Anchang Li Jiehua Zhu Cundong Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3387-3405,共19页
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani... The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method. 展开更多
关键词 COTTON DROUGHT melatonin root morphology root physiology yield
下载PDF
Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients:A matter of disease activity? 被引量:1
17
作者 Antonietta Gerarda Gravina Iacopo Panarese +7 位作者 Maria Consiglia Trotta Michele D'Amico Raffaele Pellegrino Franca Ferraraccio Marilena Galdiero Roberto Alfano Paolo Grieco Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1132-1142,共11页
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce... BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology. 展开更多
关键词 Melanocortin 3 receptor Melanocortin 5 receptor Ulcerative colitis Crohn's disease Inflammatory bowel disease
下载PDF
Yes-associated protein-mediated melatonin regulates the function of periodontal ligament stem cells under oxidative stress conditions 被引量:1
18
作者 Ke Gu Xiao-Mei Feng +2 位作者 Shao-Qing Sun Xing-Yao Hao Yong Wen 《World Journal of Stem Cells》 SCIE 2024年第11期926-943,共18页
BACKGROUND Human periodontal ligament stem cells(PDLSCs)regenerate oral tissue.In vitro expansion causes replicative senescence in stem cells.This causes intracellular reactive oxygen species(ROS)accumulation,which ca... BACKGROUND Human periodontal ligament stem cells(PDLSCs)regenerate oral tissue.In vitro expansion causes replicative senescence in stem cells.This causes intracellular reactive oxygen species(ROS)accumulation,which can impair stem cell function.Tissue engineering efficiency is reduced by exogenous ROS stimulation,which causes premature senescence under oxidative stress.Melatonin(MT),a powerful free radical scavenger,can delay PDLSCs senescence but may not maintain stemness under oxidative stress.This experiment examined the effects of hydrogen peroxide-induced oxidative stress on PDLSCs’apoptosis,senescence,and stemness.AIM To determine if MT can reverse the above effects along with the underlying molecular mechanisms involved.METHODS PDLSCs were isolated from human premolars and cultured in different conditions.Flow cytometry was used to characterize the cell surface markers of BACKGROUND Human periodontal ligament stem cells(PDLSCs)regenerate oral tissue.In vitro expansion causes replicative senescence in stem cells.This causes intracellular reactive oxygen species(ROS)accumulation,which can impair stem cell function.Tissue engineering efficiency is reduced by exogenous ROS stimulation,which causes premature senescence under oxidative stress.Melatonin(MT),a powerful free radical scavenger,can delay PDLSCs senescence but may not maintain stemness under oxidative stress.This experiment examined the effects of hydrogen peroxide-induced oxidative stress on PDLSCs’apoptosis,senescence,and stemness.AIM To determine if MT can reverse the above effects along with the underlying molecular mechanisms involved.METHODS PDLSCs were isolated from human premolars and cultured in different conditions.Flow cytometry was used to characterize the cell surface markers of differentiation,ROS,and senescence-associatedβ-galactosidase activity were assessed by various assays.Reverse transcription-polymerase chain reaction and western blot were used to measure the expression of genes and proteins related to stemness and senescence.RESULTS MT increases Yes-associated protein expression and maintains cell stemness in an induced inflammatory microenvironment,which may explain its therapeutic effects.We examined how MT affects PDLSCs aging and stemness and its biological mechanisms.CONCLUSION Our study reveals MT’s role in regulating oxidative stress in PDLSCs and Yes-associated protein-mediated activity,providing insights into cellular functions and new therapeutic targets for tissue regeneration. 展开更多
关键词 Human periodontal ligament stem cells melatonin Reactive oxygen species SENESCENCE Yes-associated protein
下载PDF
Role of bitter contributors and bitter taste receptors:a comprehensive review of their sources,functions and future development 被引量:1
19
作者 Xinyue Zhou Han Wang +6 位作者 Ming Huang Jin Chen Jianle Chen Huan Cheng Xingqian Ye Wenjun Wang Donghong Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1806-1824,共19页
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review... Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors. 展开更多
关键词 Bitter contributors Bitter taste receptor Health benefits FRUITS VEGETABLES
下载PDF
Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes
20
作者 Farfán-García Eunice Dalet Trujillo-Ferrara José Guadalupe +2 位作者 Castillo-Hernández María del Carmen Guerra-Araiza Christian Humberto Soriano-Ursúa Marvin Antonio 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2290-2302,共13页
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of... In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway. 展开更多
关键词 neural regeneration G-Protein coupled receptors structural biology drug design neurodegenera-tive disorders oligomedzation biased signaling Parkinson's disease Alzheimer's disease dopa-mine receptors muscarinic receptors grants-supported paper NEUROREGENERATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部