Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global c...Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.展开更多
Erythropoietin-producing hepatoma(EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease.EPH receptors are...Erythropoietin-producing hepatoma(EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease.EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis.However,the functions of EPH receptors in epithelial-mesenchymal transition(EMT) remain largely unknown.This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT.Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics.Finally,we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.展开更多
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi...Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.展开更多
AIM: To investigate estrogen receptors expression in duodenal familial adenomatous polyposis (FAP) and any relationship with epithelial proliferation/apoptosis markers.METHODS: Twenty-two patients affected by FAP unde...AIM: To investigate estrogen receptors expression in duodenal familial adenomatous polyposis (FAP) and any relationship with epithelial proliferation/apoptosis markers.METHODS: Twenty-two patients affected by FAP undergoing duodenal resection for malignancies were recruited. Controls were 15 healthy subjects undergoing endoscopy for dyspeptic symptoms. ER-α, ER-α, Ki-67, TUNEL and caspase 3 expression (labeling index: percentage of positive cells) were evaluated by immunohistochemistry or immunofluorescence and examined by light or confocal microscopy. Samples were assigned to four groups: normal tissue, low (LGD) and high-grade dysplasia (HGD), adenocarcinoma (AC). One-way analysis of variance, corrected by Bonferroni’s test, and Pearson’s correlation test were applied for statistical analysis.RESULTS: ER-beta showed a progressive decline: normal tissue (23.5 ± 4.9), LGD (21.1 ± 4.8), HGD (9.3 ± 3.5), AC (7.1 ± 3.1). The normal tissue of FAP subjects expressed ER-beta like the controls (23.9 ± 6.2). Conversely, ER-α showed a progressive increase from normal tissue (24.8 ± 5.6) to AC (52.0 ± 8.2); the expression in normal tissue was similar to controls (22.5 ± 5.3). Ki67 demonstrated a statistically significant progressive increase at each disease stage up to AC. TUNEL did not reveal differences between controls and normal tissue of FAP subjects, but progressive decreases were observed in LGD, through HGD to AC. Pearson’s correlation test showed a direct relationship between ER-β and TUNEL LI (r = 0.8088, P < 0.0001). Conversely, ER-α was inversely correlated with TUNEL LI (r = - 0.7257, P < 0.0001). The co-expression of ER-β and caspase 3 declined progressively from normal to neoplastic tissue.CONCLUSION: This study confirmed that ER-β is strongly decreased in duodenal FAP carcinomas, declining in a multiple step fashion, thereby suggesting a putative anti-carcinogenic effect. ER-α showed the opposite trend. ER-β/caspase 3 co-expression suggests this hormone’s possible involvement in apoptosis. Hormonal influences in FAP duodenal tumorigenesis, and modulation of these as a possible chemoprevention strategy, may be a promising approach.展开更多
Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chem...Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in art...Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica.展开更多
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(X...BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.展开更多
Extant genes can be modified, or 'tinkered with', to provide new roles or new characteristics of these genes. At the genetic level, this often involves gene duplication and specialization of the resulting gene...Extant genes can be modified, or 'tinkered with', to provide new roles or new characteristics of these genes. At the genetic level, this often involves gene duplication and specialization of the resulting genes into particular functions. We investigate how ligand-receptor partnerships evolve after gene duplication. While significant work has been conducted in this area, the examination of additional models should help us better understand the proposed models and potentially reveal novel evolutionary patterns and dynamics. We use bioinformatics, comparative genomics and phylogenetic analyses to show that preproghrelin and prepromotilin descended from a common ancestor and that a gene duplication generated these two genes shortly after the divergence of amphibians and amniotes. The evolutionary history of the receptor family differs from that of their cognate ligands. GPR39 diverges first, and an ancestral receptor gives rise to receptors classified as fish-specific clade A, GHSR and MLNR by successive gene duplications occurring before the divergence of tetrapods and ray-finned fish. The ghrelin/GHSR system is maintained and functionally conserved from fish to mammals. Motilin-MLNR specificity must have arisen by ligand-receptor coevolution after the MLN hormone gene diverged from the GHRL gene in the amniote lineage. Conserved molecular machinery can give rise to new neuroendocrine response mechanisms by the co-option of duplicated genes. Gene duplication is both parsimonious and creative in producing elements for evolutionary tinkering and plays a major role in gene co-option, thus aiding the evolution of greater biological complexity.展开更多
All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involve...All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involves mechanical work(force through a distance)and energy storage as kinetic and potential energy.This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components.It involves the application of energy directly to cells through integrin-mediated processes,cell-cell connections,stretching of the cell cytoplasm,and activation of the cell nucleus via yes-associated protein(YAP)and transcriptional coactivator with PDZ-motif(TAZ).These processes involve numerous complexes,intermediate molecules,and multiple pathways.Several pathways have been identified from research studies on vertebrate cell culture and from studies in invertebrates.These pathways involve mechanosensors and other molecules that activate the pathways.This review discusses the mitogen-activated protein kinase(MAPK)family,Hippo,Hedgehog,and Wingless-related integration site(WNT)/βcatenin signaling pathways.The mediators covered includeβcatenin,ion channels,growth factors,hormone receptors,members of the Ras superfamily,and components of the linker of nucleoskeleton and cytoskeleton(LINC)complex.However,the interrelationship among the different pathways remains to be clarified.Integrin-mediated mechanotransduction involves direct tensile loading and energy applied to the cell membrane via collagenfibril stretching.This energy is transferred between cells by stretching the cell-cell connections involving cadherins and the WNT/βcatenin pathway.These alterations induce changes in intracellular events in the cytoskeleton and nuclear skeleton caused by the release of YAP and TAZ.These coactivators then penetrate through the nuclear pores and influence nuclear cell function.Alteration in the balance of forces and energy applied to cells and tissues is hypothesized to shift the cell-extracellular matrix mechanical equilibrium by modifying mechanotransduction.The shift in equilibrium can lead to either tissue synthesis,genetic modifications,or promotefibrotic diseases,including epithelial cell-derived cancers,depending on the local metabolic conditions.展开更多
Bitter(T2R)and sweet(T1R)taste receptors have been implicated in sinonasal innate immunity and in the pathophysiology of chronic rhinosinusitis(CRS).Taste receptors are expressed on several sinonasal cell types includ...Bitter(T2R)and sweet(T1R)taste receptors have been implicated in sinonasal innate immunity and in the pathophysiology of chronic rhinosinusitis(CRS).Taste receptors are expressed on several sinonasal cell types including ciliated epithelial cells and solitary chemosensory cells.Bitter agonists released by pathogenic microbes elicit a T2R dependent signaling cascade which induces the release of bactericidal nitric oxide,increases mucociliary clearance,and promotes secretion of antimicrobial peptides.Genetic variation conferred by polymorphisms in T2R related genes is associated with differential CRS susceptibility,symptomatology and post-treatment outcomes.More recently,based on our understanding of T1R and T2R function,investigators have discovered novel potential therapeutics in T2R agonists and T1R antagonists.This review will discuss bitter and sweet taste receptor function in sinonasal immunity,explore the emerging diagnostic and therapeutic implications stemming from the most recent findings,and suggest directions for future research.展开更多
基金Acknowledgements: This work was supported by the Natural Science Foundation of Jiangsu Province, China (No. 04KJB310082) and the Science and Technology Development Foundation of Nanjing Medical University (No. 06NMUZ002).
文摘Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.
文摘Erythropoietin-producing hepatoma(EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease.EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis.However,the functions of EPH receptors in epithelial-mesenchymal transition(EMT) remain largely unknown.This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT.Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics.Finally,we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.
基金a Ph D fellowship by FCT-Fundacao para a Ciência Tecnologia (SFRH/BD/135868/2018)(to SSC)。
文摘Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
文摘AIM: To investigate estrogen receptors expression in duodenal familial adenomatous polyposis (FAP) and any relationship with epithelial proliferation/apoptosis markers.METHODS: Twenty-two patients affected by FAP undergoing duodenal resection for malignancies were recruited. Controls were 15 healthy subjects undergoing endoscopy for dyspeptic symptoms. ER-α, ER-α, Ki-67, TUNEL and caspase 3 expression (labeling index: percentage of positive cells) were evaluated by immunohistochemistry or immunofluorescence and examined by light or confocal microscopy. Samples were assigned to four groups: normal tissue, low (LGD) and high-grade dysplasia (HGD), adenocarcinoma (AC). One-way analysis of variance, corrected by Bonferroni’s test, and Pearson’s correlation test were applied for statistical analysis.RESULTS: ER-beta showed a progressive decline: normal tissue (23.5 ± 4.9), LGD (21.1 ± 4.8), HGD (9.3 ± 3.5), AC (7.1 ± 3.1). The normal tissue of FAP subjects expressed ER-beta like the controls (23.9 ± 6.2). Conversely, ER-α showed a progressive increase from normal tissue (24.8 ± 5.6) to AC (52.0 ± 8.2); the expression in normal tissue was similar to controls (22.5 ± 5.3). Ki67 demonstrated a statistically significant progressive increase at each disease stage up to AC. TUNEL did not reveal differences between controls and normal tissue of FAP subjects, but progressive decreases were observed in LGD, through HGD to AC. Pearson’s correlation test showed a direct relationship between ER-β and TUNEL LI (r = 0.8088, P < 0.0001). Conversely, ER-α was inversely correlated with TUNEL LI (r = - 0.7257, P < 0.0001). The co-expression of ER-β and caspase 3 declined progressively from normal to neoplastic tissue.CONCLUSION: This study confirmed that ER-β is strongly decreased in duodenal FAP carcinomas, declining in a multiple step fashion, thereby suggesting a putative anti-carcinogenic effect. ER-α showed the opposite trend. ER-β/caspase 3 co-expression suggests this hormone’s possible involvement in apoptosis. Hormonal influences in FAP duodenal tumorigenesis, and modulation of these as a possible chemoprevention strategy, may be a promising approach.
基金National Yang Ming Chiao Tung University Far Eastern Memorial Hospital Joint Research Programs(NYCU-FEMH 109DN03,110DN06,111DN04,112DN05).
文摘Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金the National Key R&D Program of China(No.2019YFD0901204)the Hong Kong,Macao and Taiwan Science and Technology Cooperation Project(No.2014DFT30120)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.Y14C190008)the National Natural Science Foundation of China(Nos.31101937,31872547)the Science Foundation of Donghai Laboratory(No.DH-2022KF0209)。
文摘Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica.
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金Supported by Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD011)
文摘BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
基金supported by the National Basic Research Program of China (2007CB411600)the National Natural Science Foundation of China (30621092,30623007)the Bureau of Science and Technology of Yunnan Province (O803481101)
文摘Extant genes can be modified, or 'tinkered with', to provide new roles or new characteristics of these genes. At the genetic level, this often involves gene duplication and specialization of the resulting genes into particular functions. We investigate how ligand-receptor partnerships evolve after gene duplication. While significant work has been conducted in this area, the examination of additional models should help us better understand the proposed models and potentially reveal novel evolutionary patterns and dynamics. We use bioinformatics, comparative genomics and phylogenetic analyses to show that preproghrelin and prepromotilin descended from a common ancestor and that a gene duplication generated these two genes shortly after the divergence of amphibians and amniotes. The evolutionary history of the receptor family differs from that of their cognate ligands. GPR39 diverges first, and an ancestral receptor gives rise to receptors classified as fish-specific clade A, GHSR and MLNR by successive gene duplications occurring before the divergence of tetrapods and ray-finned fish. The ghrelin/GHSR system is maintained and functionally conserved from fish to mammals. Motilin-MLNR specificity must have arisen by ligand-receptor coevolution after the MLN hormone gene diverged from the GHRL gene in the amniote lineage. Conserved molecular machinery can give rise to new neuroendocrine response mechanisms by the co-option of duplicated genes. Gene duplication is both parsimonious and creative in producing elements for evolutionary tinkering and plays a major role in gene co-option, thus aiding the evolution of greater biological complexity.
文摘All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involves mechanical work(force through a distance)and energy storage as kinetic and potential energy.This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components.It involves the application of energy directly to cells through integrin-mediated processes,cell-cell connections,stretching of the cell cytoplasm,and activation of the cell nucleus via yes-associated protein(YAP)and transcriptional coactivator with PDZ-motif(TAZ).These processes involve numerous complexes,intermediate molecules,and multiple pathways.Several pathways have been identified from research studies on vertebrate cell culture and from studies in invertebrates.These pathways involve mechanosensors and other molecules that activate the pathways.This review discusses the mitogen-activated protein kinase(MAPK)family,Hippo,Hedgehog,and Wingless-related integration site(WNT)/βcatenin signaling pathways.The mediators covered includeβcatenin,ion channels,growth factors,hormone receptors,members of the Ras superfamily,and components of the linker of nucleoskeleton and cytoskeleton(LINC)complex.However,the interrelationship among the different pathways remains to be clarified.Integrin-mediated mechanotransduction involves direct tensile loading and energy applied to the cell membrane via collagenfibril stretching.This energy is transferred between cells by stretching the cell-cell connections involving cadherins and the WNT/βcatenin pathway.These alterations induce changes in intracellular events in the cytoskeleton and nuclear skeleton caused by the release of YAP and TAZ.These coactivators then penetrate through the nuclear pores and influence nuclear cell function.Alteration in the balance of forces and energy applied to cells and tissues is hypothesized to shift the cell-extracellular matrix mechanical equilibrium by modifying mechanotransduction.The shift in equilibrium can lead to either tissue synthesis,genetic modifications,or promotefibrotic diseases,including epithelial cell-derived cancers,depending on the local metabolic conditions.
基金This work was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under award number R01DC013588-04S2(to IWM).
文摘Bitter(T2R)and sweet(T1R)taste receptors have been implicated in sinonasal innate immunity and in the pathophysiology of chronic rhinosinusitis(CRS).Taste receptors are expressed on several sinonasal cell types including ciliated epithelial cells and solitary chemosensory cells.Bitter agonists released by pathogenic microbes elicit a T2R dependent signaling cascade which induces the release of bactericidal nitric oxide,increases mucociliary clearance,and promotes secretion of antimicrobial peptides.Genetic variation conferred by polymorphisms in T2R related genes is associated with differential CRS susceptibility,symptomatology and post-treatment outcomes.More recently,based on our understanding of T1R and T2R function,investigators have discovered novel potential therapeutics in T2R agonists and T1R antagonists.This review will discuss bitter and sweet taste receptor function in sinonasal immunity,explore the emerging diagnostic and therapeutic implications stemming from the most recent findings,and suggest directions for future research.