期刊文献+
共找到82,201篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Activation and Blockade of Serotonin 5-HT1A Receptors on the Immune Response in Rats Selected for Different Levels of Aggressiveness
1
作者 Elizaveta Alperina Elena Zhukova +2 位作者 Galina Idova Rimma Kozhemyakina Margarita Cheido 《Pharmacology & Pharmacy》 2015年第9期451-459,共9页
The present study examines the effects of serotonin (5-HT) 1A receptor ligands on humoral im-mune response in two rat lines selected for over 75 generations for the enhancement or elimination of aggression. Activation... The present study examines the effects of serotonin (5-HT) 1A receptor ligands on humoral im-mune response in two rat lines selected for over 75 generations for the enhancement or elimination of aggression. Activation of presynaptic 5-HT1A receptors with a low dose of the selective 5-HT1A receptor agonist 8-OH-DPAT (0.1 mg/kg) or the blockade of postsynaptic 5-HT1A receptors with the antagonist WAY-100635 (1.0 mg/kg) did not affect the numbers of IgM-antibody forming cells (IgM-AFC) in the spleen of highly aggressive rats, which were characterized by higher immune responsiveness compared to nonaggressive line. On the other hand, the same doses of 8-OH-DPAT and WAY-100635, as well as a higher dose of 8-OH-DPAT (1.0 mg/kg), which is known to activate postsynaptic 5-HT1A receptors, produce immunostimulation in nonaggressive rats. However, only the highest dose of 8-OH-DPAT (5.0 mg/kg) was able to cause immunosuppression in nonaggressive rats that was mainly dependent on stimulation of postsynaptic 5-HT1A receptors. In contrast to nonaggressive rats, the dose of 1.0 mg/kg 8-OH-DPAT was sufficient to produce a decrease in the numbers of IgM-AFC in highly aggressive rats. Thus, pharmacological activation of pre- and postsynaptic 5-HT1A receptors, as well as the blockade of postsynaptic 5-HT1A receptors, produced different effects on the immune response in two lines of rats selected for high level of aggression or its absence. These data may have implications for more efficient treatments of a number of mental disorders associated with abnormal aggression. 展开更多
关键词 Aggressive Behavior serotonin Pre- and POSTSYNAPTIC 5-HT1A receptors 8-OH-DPAT WAY-100635 IgM-Immune Response
下载PDF
Serotonin syndrome controversies:A need for consensus
2
作者 Sanjay Prakash Chetsi S Shah Anurag Prakash 《World Journal of Critical Care Medicine》 2024年第2期150-158,共9页
Serotonin syndrome(SS)is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system.Although more than seven decades have passed since the first description of SS,it ... Serotonin syndrome(SS)is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system.Although more than seven decades have passed since the first description of SS,it is still an enigma in terms of terminology,clinical features,etiology,pathophysiology,diagnostic criteria,and therapeutic measures.The majority of SS cases have previously been reported by toxicology or psychiatry centers,particularly in people with mental illness.However,serotonergic medications are used for a variety of conditions other than mental illness.Serotonergic properties have been discovered in several new drugs,including over-the-counter medications.These days,cases are reported in non-toxicology centers,such as perioperative settings,neurology clinics,cardiology settings,gynecology settings,and pediatric clinics.Overdoses or poisonings of serotonergic agents constituted the majority of the cases observed in toxicology or psychiatry centers.Overdose or poisoning of serotonergic drugs is uncommon in other clinical settings.Patients may develop SS at therapeutic dosages.Moreover,these patients may continue to use serotonergic medications even if they develop mild to moderate SS due to several reasons.Thus,the clinical presentation(onset,severity,and clinical features)in such instances may not exactly match what toxicologists or psychiatrists observe in their respective settings.They produce considerable diversity in many aspects of SS.However,other experts discount these new developments in SS.Since SS is a potentially lethal illness,consensus is required on several concerns related to SS. 展开更多
关键词 serotonin serotonin syndrome serotonin toxicity Selective serotonin reuptake inhibitors Antidepressants CYPROHEPTADINE
下载PDF
Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction 被引量:8
3
作者 Hai-Lian Shi Chu-Hsuan Liu +6 位作者 Li-Li Ding Yu Zheng Xiao-Yan Fei Lu Lu Xue-Ming Zhou Jian-Ye Yuan Jian-Qun Xie 《World Journal of Gastroenterology》 SCIE CAS 2015年第16期4852-4863,共12页
AIM:To determine the molecular mechanisms of Shugan decoction(SGD) in the regulation of colonic motility and visceral hyperalgesia(VHL) in irritable bowel syndrome(IBS).METHODS:The chemical compounds contained in SGD ... AIM:To determine the molecular mechanisms of Shugan decoction(SGD) in the regulation of colonic motility and visceral hyperalgesia(VHL) in irritable bowel syndrome(IBS).METHODS:The chemical compounds contained in SGD were measured by high-performance liquid chromatography.A rat model of IBS was induced by chronic water avoidance stress(WAS).The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension.Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining.The contents of tumor necrosis factor(TNF)-αin colonic tissue and calcitonin-gene-related peptide(CGRP)in serum were measured by ELISA.The protein expression of serotonin[5-hydroxytryptamide(5-HT)],serotonin transporter(SERT),chromogranin A(Cg A)and CGRP incolon tissue was measured by immunohistochemistry.RESULTS:SGD inhibited colonic motility dysfunction and VHL in rats with IBS.Blockers of transient receptor potential(TRP)vanilloid 1(TRPV1)(Ruthenium Red)and TRP ankyrin-1(TRPA1)(HC-030031)and activator of protease-activated receptor(PAR)4 increased the pain pressure threshold,whereas activators of PAR2and TRPV4 decreased the pain pressure threshold in rats with IBS.The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1(capsaicin),TRPV4(RN1747),TRPA1(Polygodial)and PAR2(AC55541).In addition,CGRP levels in serum and colonic tissue were both increased in these rats.TNF-αlevel in colonic tissue was also significantly upregulated.However,the levels of 5-HT,SERT and Cg A in colonic tissue were decreased.All these pathological changes in rats with IBS were attenuated by SGD.CONCLUSION:SGD alleviated VHL and attenuated colon motility in IBS,partly by regulating TRPV1,TRPV4,TRPA1,PAR2,5-HT,Cg A and SERT,and reducing CGRP and TNF-αlevel. 展开更多
关键词 Shugan DECOCTION VISCERAL HYPERALGESIA serotonin Transient receptor potential Proteaseactivatedreceptor serotonin TRANSPORTER Calcitoningene-related peptide Tumor necrosis factor-α
下载PDF
Association of Serotonin Receptors with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-analysis 被引量:6
4
作者 Yu-wei HOU Ping XIONG +3 位作者 Xue GU Xin HUANG Min WANG Jing WU 《Current Medical Science》 SCIE CAS 2018年第3期538-551,共14页
Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders in childhood, with a high heritability about 60% to 90%. Serotonin is a monoamine neurotransmitter. Numerous studies have re... Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders in childhood, with a high heritability about 60% to 90%. Serotonin is a monoamine neurotransmitter. Numerous studies have reported the association between the serotonin receptor family (5-HTR) gene polymorphisms and ADHD, but the results are still controversial. In this study, we conducted a meta-analysis of the association between 5-HTRIB, 5-HTR2A, and 5-HTR2C genetic variants and ADHD. The results showed that the 861G allele of 5-HTRIB SNP rs6296 could significantly increase the risk of ADHD (OR= 1.09, 95% CI: 1.01-1.18); the 5-HTR2C gene rs518147 (OR=1.69, 95% CI: 1.38-2.07) and rs3813929 (OR = 1.57, 95% CI: 1.25-1.97) were all associated with the risk of ADHD. In addition, we also carried on a case- control study to explore the relevance between potential candidate genes 5-HTR1A, 5-HTRIE, 5-HTR3A and ADHD. The results indicated that 5-HTRIA rs6295 genotype (CC+CG vs. GG OR=Z00, 95% CI: 1.23-3.27) and allele (OR=1.77, 95% CI: 1.16-2.72) models were statistically significantly different between case group and control group. This study is the first comprehensive exploration and summary of the association between serotonin receptor family genetic variations and ADHD, and it also provides more evidence for the etiology of ADHD. 展开更多
关键词 attention deficit hyperactivity disorder serotonin receptor genetic variations META-ANALYSIS association study
下载PDF
Distribution of serotonin 5-HT_(2A) and 5-HT_7 receptors in the Onuf’s nucleus of the rat spinal cord 被引量:3
5
作者 Fanqing Zeng Chen Xu Ge Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第8期853-857,共5页
BACKGROUND:Motoneurons from the Onuf’s nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytr... BACKGROUND:Motoneurons from the Onuf’s nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf’s nucleus of the spinal cord. However, few studies exist that describe 5-HT receptor distribution in the Onuf’s nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial. OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf’s nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-HT7 receptor to central modulation of urogenital function. DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicro-structure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007. MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into gender control group (n = 4, 50% male and 50% female) and a retrograde tracing group (n = 6, 100% male) Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France. METHODS: In the gender control group, the spinal L5-6 segments were harvested, sliced, and then incubate antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup, n = 3) and the right external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluorescence staining. MAIN OUTCOME MEASURES: Distribution analysis of 5-HT2A and 5-HT7 receptors in Onuf’s nucleus utilizing optical or laser confocal microscopy. RESULTS: 5-HT2A receptor immunoreactivity was revealed primarily in the medial region of the dorsolateral nucleus of Onuf’s nucleus. 5-HT7 receptor expression was observed in the lateral part of the dorso-lateral nucleus. 5-HT2A and 5-HT7 receptor expressions in the Onuf’s nucleus were significantly greater in male rats, compared to female rats. Double-labeling immunofluorescence demonstrated that 5-HT2A recepto were distributed primarily in the surrounding motoneurons innervating the ischiocavernosus, and 5-HT7 receptors were primarily expressed in motoneurons innervating the external urethral sphincter. CONCLUSION: Motoneurons innervating the ischiocavernosus and external urethral sphincter are located primarily in the medial and lateral region of the dorsolateral nucleus of L5-6 segments. The 5-HT2A receptor-innervating ischiocavernosus may be preferentially involved in the regulation of sexual reflex, and the 5-HT7 receptor-innervating external urethral sphincter may mainly join in regulating micturition reflex. 展开更多
关键词 5-hydroxytryptamine receptor Onuf's nucleus retrograde tracing urogenital reflex
下载PDF
Serotonin receptor 2B induces visceral hyperalgesia in rat model and patients with diarrhea-predominant irritable bowel syndrome
6
作者 Zheng-Yang Li Yu-Qing Mao +6 位作者 Qian Hua Yong-Hong Sun Hai-Yan Wang Xuan-Guang Ye Jing-Xian Hu Ya-Jie Wang Miao Jiang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1431-1449,共19页
BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diar... BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated. 展开更多
关键词 Diarrhea-predominant irritable bowel syndrome serotonin receptor 2B Transient receptor potential vanilloid type-1 Visceral hypersensitivity Abdominal pain
下载PDF
Gut microbiome and serum metabolome analyses identify Bacteroides fragilis as regulators of serotonin content and PRL secretion in broody geese
7
作者 Yu Zhang Ning Zhou +7 位作者 Jia Wu Lina Song Qiang Bao Kaiqi Weng Yang Zhang Wanwipa Vongsangnak Guohong Chen Qi Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2033-2051,共19页
Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirect... Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry. 展开更多
关键词 GEESE broody behavior gut microbiota serotonin PROLACTIN
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
8
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
9
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
10
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
11
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemia—reperfusion injury N-ACETYLserotonin high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
下载PDF
Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients:A matter of disease activity?
12
作者 Antonietta Gerarda Gravina Iacopo Panarese +7 位作者 Maria Consiglia Trotta Michele D'Amico Raffaele Pellegrino Franca Ferraraccio Marilena Galdiero Roberto Alfano Paolo Grieco Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1132-1142,共11页
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce... BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology. 展开更多
关键词 Melanocortin 3 receptor Melanocortin 5 receptor Ulcerative colitis Crohn's disease Inflammatory bowel disease
下载PDF
Role of bitter contributors and bitter taste receptors:a comprehensive review of their sources,functions and future development
13
作者 Xinyue Zhou Han Wang +6 位作者 Ming Huang Jin Chen Jianle Chen Huan Cheng Xingqian Ye Wenjun Wang Donghong Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1806-1824,共19页
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review... Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors. 展开更多
关键词 Bitter contributors Bitter taste receptor Health benefits FRUITS VEGETABLES
下载PDF
Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: a comprehensive review
14
作者 JUN-FENG ZHAO YI-RAN JIANG +2 位作者 TIAN-LIN GUO YONG-QING JIAO XUN WANG 《BIOCELL》 SCIE 2024年第7期1011-1022,共12页
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea... Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future. 展开更多
关键词 NEURODEGENERATION Glial cell RECEPTOR Alzheimer’s disease
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
15
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Novel Role of Calcium-Sensitive Receptors in Chronic Hypoxia-Induced Proliferation of Pulmonary Vein Smooth Muscle Cells
16
作者 Shaoxing Li Jurong Zhang +2 位作者 Zhuandi Lin Zhiming Xiang Gongyong Peng 《Journal of Clinical and Nursing Research》 2024年第7期349-355,共7页
Objective:Vascular remodeling due to chronic hypoxia(CH)occurs not only in the pulmonary arteries but also in the pulmonary veins.Pulmonary vascular remodeling arises from the proliferation of pulmonary vascular myocy... Objective:Vascular remodeling due to chronic hypoxia(CH)occurs not only in the pulmonary arteries but also in the pulmonary veins.Pulmonary vascular remodeling arises from the proliferation of pulmonary vascular myocytes.However,the mechanism by which CH induces the proliferation of pulmonary vein smooth muscle cells(PVSMCs)is unknown.This study aimed to investigate the mechanism by which CH affects the proliferation of PVSMCs.Methods:PVSMCs were isolated from rat distal pulmonary veins and exposed to CH(4%O2,60h),and the expression of the calcium-sensitive receptor(CaSR)was detected by Western blotting and immunofluorescence.MTT assay was used to detect the proliferation viability of the cells,and the changes in the intracellular calcium concentration were detected by laser confocal scanning technique.Results:CaSR expression was present in rat distal PVSMCs,and CaSR protein expression was upregulated under hypoxia.The positive regulator spermine not only enhanced CH-induced CaSR upregulation but also enhanced CH-induced increase in cell viability and calcium ion concentration.The negative CaSR regulator NPS2143 not only attenuated CH-induced CaSR upregulation but also inhibited CH-induced cell viability and calcium ion concentration.Conclusion:CaSR-mediated hyperproliferation is a novel pathogenic mechanism for the development of proliferation in distal PVSMCs under CH conditions. 展开更多
关键词 Hypoxia Calcium-sensitive receptor(CaSR) Pulmonary hypertension Cell proliferation Calcium ions
下载PDF
Expression and functional study of cholecystokinin-A receptors on the interstitial Cajal-like cells of the guinea pig common bile duct 被引量:1
17
作者 Dan Xu Song-Lin Ma +1 位作者 Man-Lin Huang Heng Zhang 《World Journal of Gastroenterology》 SCIE CAS 2023年第38期5374-5382,共9页
BACKGROUND Many studies have shown that interstitial Cajal-like cell(ICLC)abnormalities are closely related to a variety of dynamic gastrointestinal disorders.ICLCs are pacemaker cells for gastrointestinal movement an... BACKGROUND Many studies have shown that interstitial Cajal-like cell(ICLC)abnormalities are closely related to a variety of dynamic gastrointestinal disorders.ICLCs are pacemaker cells for gastrointestinal movement and are involved in the transmission of nerve impulses.AIM To elucidate the expression profile and significance of cholecystokinin-A(CCK-A)receptors in ICLCs in the common bile duct(CBD),as well as the role of CCK in regulating CBD motility through CCK-A receptors on CBD ICLCs.METHODS The levels of tyrosine kinase receptor(c-kit)and CCK-A receptors in CBD tissues and isolated CBD cells were quantified using the double immunofluorescence labeling technique.The CCK-mediated enhancement of the movement of CBD muscle strips through CBD ICLCs was observed by a muscle strip contraction test.RESULTS Immunofluorescence showed co-expression of c-kit and CCK-A receptors in the CBD muscularis layer.Observations of isolated CBD cells showed that c-kit was expressed on the surface of ICLCs,the cell body and synapse were colored and polygonal,and some cells presented protrusions and formed networks adjacent to the CBD while others formed filaments at the synaptic terminals of local cells.CCK-A receptors were also expressed on CBD ICLCs.At concentrations ranging from 10^(-6) mol/L to 10^(-10) mol/L,CCK promoted CBD smooth muscle contractility in a dose-dependent manner.In contrast,after ICLC removal,the contractility mediated by CCK in CBD smooth muscle decreased.CONCLUSION CCK-A receptors are highly expressed on CBD ICLCs,and CCK may regulate CBD motility through the CCK-A receptors on ICLCs. 展开更多
关键词 Interstitial Cajal-like cells Tyrosine kinase receptor Common bile duct Cholecystokinin-A receptors
下载PDF
The role of purinergic receptors in neural repair and regeneration after spinal cord injury 被引量:1
18
作者 Rui-Dong Cheng Wen Ren +1 位作者 Ben-Yan Luo Xiang-Ming Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1684-1690,共7页
Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural r... Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural repair and regeneration,are highly complex.Although there have been many studies on these mechanisms,there is no effective intervention for such injury.In spinal cord injury,neural repair and regeneration is an important part of improving neurological function after injury,although the low regenerative ability of nerve cells and the difficulty in axonal and myelin regeneration after spinal cord injury hamper functional recovery.Large amounts of ATP and its metabolites are released after spinal cord injury and participate in various aspects of functional regulation by acting on purinergic receptors which are widely expressed in the spinal cord.These processes mediate intracellular and extracellular signalling pathways to improve neural repair and regeneration after spinal cord injury.This article reviews research on the mechanistic roles of purinergic receptors in spinal cord injury,highlighting the potential role of purinergic receptors as interventional targets for neural repair and regeneration after spinal cord injury. 展开更多
关键词 glial cells glial scar inflammatory responses neural regeneration neural repair neural stem cells purinergic receptors spinal cord injury
下载PDF
Regulation of serotonin production by specific microbes from piglet gut
19
作者 Ziyu Liu Yidan Ling +7 位作者 Yu Peng Shuibing Han Yuting Ren Yujia Jing Wenlu Fan Yong Su Chunlong Mu Weiyun Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2539-2553,共15页
Background Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut.Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models.However,how gut mic... Background Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut.Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models.However,how gut microbes regulate intestinal serotonin production in piglets remains vague.To investigate the relationship between microbiota and serotonin specifically in the colon,microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion.Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investi-gate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells.Results Antibiotic infusion increased quantities of Lactobacillus amylovorus(LA)that positively correlated with increased serotonin concentrations in the colon,while no effects observed for Limosilactobacillus reuteri(LR).To understand how microbes regulate serotonin,representative strains of LA,LR,and Streptococcus alactolyticus(SA,enriched in feces from prior observation)were selected for cell culture studies.Compared to the control group,LA,LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1(TPH1)expression and promoted serotonin production in IPEC-J2 cells,while in RIN-14B cells only LA exerted similar action.To investigate potential mechanisms mediated by microbe-derived molecules,microbial metabolites including lactate,acetate,glutamine,andγ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacte-rial supernatant.Among these metabolites,acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1.Similar effects were also recapitulated when treating the cells with AR420626,an agonist targeting free fatty acid receptor 3.Conclusions Overall,these results suggest that Lactobacillus amylovorus showed a positive correlation with sero-tonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures.These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host,which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis. 展开更多
关键词 COLON LACTOBACILLUS Microbial metabolites serotonin
下载PDF
Serotonin enrichment of rice endosperm by metabolic engineering
20
作者 Qingqing Yang Yan Tan +2 位作者 Ying Ye Dongsheng Zhao Qiaoquan Liu 《The Crop Journal》 SCIE CSCD 2023年第6期1943-1948,共6页
In animals,serotonin is a neurotransmitter and mood regulator.In plants,serotonin functions in energy acquisition,tissue maintenance,delay of senescence,and response to biotic and abiotic stresses.In this study,we exa... In animals,serotonin is a neurotransmitter and mood regulator.In plants,serotonin functions in energy acquisition,tissue maintenance,delay of senescence,and response to biotic and abiotic stresses.In this study,we examined the effect of serotonin enrichment of rice endosperm on plant growth,endosperm development,and grain quality.To do so,TDCs and T5H were selected as targets for serotonin fortification.Overexpression of TDC1 or TDC3 increased serotonin accumulation relative to overexpression of T5H in rice grain.Transgenic lines of target genes driven by the Gt1 promoter showed better field performance than those driven by the Ubi promoter.Overexpression of T5H showed little effect on plant growth or grain physicochemical quality.In neuronal cell culture assays,serotonin induced neuroprotective action against apoptosis.Breeding of rice cultivars with high serotonin content may be beneficial for health and nutrition. 展开更多
关键词 Rice endosperm serotonin Metabolic engineering TDCS T5H
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部