The study was carried out to observe the effects of heparin,dexamethasone and ibuprofen on the clearance function of the Kupffer cell complement receptors(KCCR) in experimental acute obstructive cholangitis (AOC) in r...The study was carried out to observe the effects of heparin,dexamethasone and ibuprofen on the clearance function of the Kupffer cell complement receptors(KCCR) in experimental acute obstructive cholangitis (AOC) in rats.It was found that in AOC,the mortality rate was far higher in not treated group and dexamethasone treated group than in ibuprofen and heparin treated groups and the clearance function of KCCR was significantly decreased 48h after the onset of AOC but it was strengthened with the administration of heparin and ibuprofen.The prominent pathological changes of AOC were the damages on the hepatocytes,degeneration of Kupffer cells with reduction of their functions and damages of the pulmonary alveolar walls. The phagocytic function of Kupffer cells were restored and damages of the liver and lungs abated after the administration of heparin.This study was financially suppoited by the National Funds for Natural Science of China (Approval certificate numberof NSFC 38870770).展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re...BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the rela...BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.展开更多
BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-...BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.展开更多
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator...Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this...The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling...Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.展开更多
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review...Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.展开更多
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce...BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.展开更多
Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potentia...Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.展开更多
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea...Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.展开更多
Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechan...Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.展开更多
文摘The study was carried out to observe the effects of heparin,dexamethasone and ibuprofen on the clearance function of the Kupffer cell complement receptors(KCCR) in experimental acute obstructive cholangitis (AOC) in rats.It was found that in AOC,the mortality rate was far higher in not treated group and dexamethasone treated group than in ibuprofen and heparin treated groups and the clearance function of KCCR was significantly decreased 48h after the onset of AOC but it was strengthened with the administration of heparin and ibuprofen.The prominent pathological changes of AOC were the damages on the hepatocytes,degeneration of Kupffer cells with reduction of their functions and damages of the pulmonary alveolar walls. The phagocytic function of Kupffer cells were restored and damages of the liver and lungs abated after the administration of heparin.This study was financially suppoited by the National Funds for Natural Science of China (Approval certificate numberof NSFC 38870770).
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金Supported by Natural Science Foundation of Guangxi,No.2020GXNSFDA238006Special Fund of the Central Government Guiding Local Scientific and Technological Development by Guangxi Science and Technology Department,No.GuikeZY21195024Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi,No.2018KY0419.
文摘BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.
文摘BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.
基金supported by the National Nature Science Foundation of China(No.81873694)the Key Research and Development Program of Hubei Province(No.2022BCA005)Knowledge Innovation Program of Wuhan Basic Research(No.2022020801010446).
文摘Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金This work was supported by the National Natural Science Foundation of China(32202278)the Chongqing Special Postdoctoral Science Foundation of Chinathe earmarked fund for China Agricultural Research System(CARS-26)。
文摘The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金This work was supported by grants from the National Natural Science Foundation of China(No.82304000).
文摘Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.
基金the financial support provided by“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C020122022C02078)。
文摘Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.
基金The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of University of Campania Luigi Vanvitelli(Protocol code 795 on December 23,2019).
文摘BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.
基金supported by grants from the Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201010165)the Key Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201020335).
文摘Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
基金This study was supported by grants from the Science and Technology Innovation Fund Project of Dalian(No.2021JJ13SN55).
文摘Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.
文摘Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.