Reverse cholesterol transport (RCT) is a complex process which transfers cholesterol from peripheral cells to the liver for subsequent elimination from the body via feces. Thyroid hormones (THs) affect growth, develop...Reverse cholesterol transport (RCT) is a complex process which transfers cholesterol from peripheral cells to the liver for subsequent elimination from the body via feces. Thyroid hormones (THs) affect growth, develop- ment, and metabolism in almost all tissues. THs exert their actions by binding to thyroid hormone receptors (TRs). There are two major subtypes of TRs, TRα and TRβ, and several isoforms (e.g. TRα1, TRα2, TRβ1, and TRβ2). Activation of TRα1 affects heart rate, whereas activation of TRβ1 has positive effects on lipid and lipoprotein metabolism. Consequently, particular interest has been focused on the development of thyromimetic compounds targeting TRβ1, not only because of their ability to lower plasma cholesterol but also due their ability to stimulate RCT, at least in pre-clinical models. In this review we focus on THs, TRs, and on the effects of TRβ1-modulating thyromimetics on RCT in various animal models and in humans.展开更多
To explore and enrich the molecular mechanisms of thyroid hormone receptors (TRs) in the metamorphosis of amphibians, the cDNA sequences of TRa and TRβ in Microhyla fissipes were cloned and characterized. TRa was 1...To explore and enrich the molecular mechanisms of thyroid hormone receptors (TRs) in the metamorphosis of amphibians, the cDNA sequences of TRa and TRβ in Microhyla fissipes were cloned and characterized. TRa was 1 706 bp in length with an open reading frame (ORF) of 1 257 bp encoding a predicted protein of 418 amino acids and TRβ was 1 422 bp with an ORF of 1 122 bp encoding a predicted protein of 373 amino acids. Their protein sequences contained 4 conserved domains of the nuclear receptor superfamily with two highly conserved cysteine-rich zinc fingers in the DNA-binding domain, whereas TRβ was 42 amino acids shorter in its A/B domain than TRot. Highly-conserved sequences and structures indicated their conserved functions during metamorphosis. TRa expression reached peak at 12 h and then decreased from 12 h to 48 h. While dramatically up-regulated TRβ was observed after exposure of T3 within 24 h, and it was down-regulated from 24 h to 48 h. The expression pattern of TRβ is similar to that in the natural metamorphosis. Furthermore, tadpoles treated 24 h also resembled the climax of metamorphosis tadpoles and TRβ expression had higher responsiveness than TRa to T3 in M. fissipes. These results suggest M. fissipes may serve as the model to assay environmental compounds on TH signaling disruption.展开更多
The human adenovirus type 5 early region 1A (E1A) is one of two oncogenes present in the adenovirus genome and functions by interfering with the activities of cellular regulatory proteins. The E1A gene is alternativ...The human adenovirus type 5 early region 1A (E1A) is one of two oncogenes present in the adenovirus genome and functions by interfering with the activities of cellular regulatory proteins. The E1A gene is alternatively spliced to yield five products. Earlier studies have revealed that E1A can regulate the function of thyroid hormone (T3) receptors (TRs). However, analysis in yeast compared with transfection studies in mammalian cell cultures yields surprisingly different effects. Here, we have examined the effect of E1A on TR function by using the frog oocyte in vivo system, where the effects of E1A can be studied in the context of chromatin. We demonstrate that different isoforms of E1A have distinct effects on TR function. The two longest forms inhibit both the repression by unliganded TR and activation by T3-bound TR. We further show that E1A binds to unliganded TR to displace the endogenous corepressor nuclear receptor corepressor, thus relieving the repression by unliganded TR. On the other hand, in the presence of T3, E1A inhibits gene activation by T3-bound TR indirectly, through a mechanism that requires its binding domain for the general coactivator p300. Taken together, our results thus indicate that E1A affects TR function through distinct mechanisms that are dependent upon the presence or absence of T3.展开更多
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orches...The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.展开更多
BACKGROUND The imbalance of hormone levels in the body is closely related to the occurrence and progression of schizophrenia,especially thyroid hormones.AIM To study the relationship between triiodothyronine(T3),thyro...BACKGROUND The imbalance of hormone levels in the body is closely related to the occurrence and progression of schizophrenia,especially thyroid hormones.AIM To study the relationship between triiodothyronine(T3),thyroxine(T4),free T3(FT3),free T4(FT4),thyroid stimulating hormone(TSH)and schizophrenia.METHODS In this study,100 schizophrenia patients were selected from our hospital between April 2022 and April 2024.Their clinical data were analyzed retrospectively.Based on the Positive and Negative Syndrome Scale(PANSS)score,patients were divided into mild(1-3 points,n=39),moderate(4 points,n=45),and severe groups(5-7 points,n=16).Additionally,55 healthy individuals served as a control group.Venous blood samples were collected to measure T3,T4,FT3,FT4,TSH,and cortisol concentrations,analyzing their relationship with PANSS scores.RESULTS The serum levels of T3,FT3,FT4,TSH and cortisol in the schizophrenia group were lower than those in the control group(P<0.05).With the increase of the severity of the disease,the concentrations of T3 and T4 decreased,while the con-centrations of TSH and cortisol increased(P<0.05).The concentrations of TSH and cortisol were positively correlated with the PANSS score,while T3 and T4 were negatively correlated with the PANSS score(P<0.05).The receiver ope-rating characteristic curve results showed that T3,T4,TSH,and cortisol had good efficacy in the diagnosis of schizophrenia.Logistic results showed that decreased T3 level,decreased T4 level,decreased TSH level and increased cortisol level may be independent risk factors for schizophrenia.CONCLUSION Thyroid hormone levels are associated with the severity of schizophrenia symptoms,which can provide new solutions for the diagnosis and treatment of schizophrenia.展开更多
The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among th...The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.展开更多
BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has...BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has been insufficient attention given to the relationship between thyroid hormone sensitivity and dyslipidemia in the T2DM population,particularly concerning non-high-density lipoprotein cholesterol(non-HDL-C).AIM To clarify the association between thyroid hormone sensitivity and dyslipidemia in patients with T2DM.METHODS In this cross-sectional study,thyroid hormone sensitivity indices,the thyroid feedback quantile-based index(TFQI),the thyroid-stimulating hormone index(TSHI),the thyrotrophic T4 resistance index(TT4RI),and the free triiodothyronine(FT3)/free thyroxine(FT4)ratio were calculated.Logistic regression analysis was performed to determine the associations between those composite indices and non-HDL-C levels.Random forest variable importance and Shapley Additive Explanations(SHAP)summary plots were used to identify the strength and direction of the association between hyper-non-HDL-C and its major predictor.RESULTS Among the 994 participants,389(39.13%)had high non-HDL-C levels.Logistic regression analysis revealed that the risk of hyper-non-HDL-C was positively correlated with the TFQI(OR:1.584;95%CI:1.088-2.304;P=0.016),TSHI(OR:1.238;95%CI:1.034-1.482;P=0.02),and TT4RI(OR:1.075;95%CI:1.006-1.149;P=0.032)but was not significantly correlated with the FT3/FT4 ratio.The relationships between composite indices of the thyroid system and non-HDL-C levels differed according to sex.An increased risk of hyper-non-HDL-C was associated with elevated TSHI levels in men(OR:1.331;95%CI:1.003-1.766;P=0.048)but elevated TFQI levels in women(OR:2.337;95%CI:1.4-3.901;P=0.001).Among the analyzed variables,the average SHAP values were highest for TSHI,followed by TT4RI.CONCLUSION Impaired sensitivity to thyroid hormones was associated with high non-HDL-C levels in patients with T2DM.展开更多
Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant gro...Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant growth and development and acclimation to environmental changes.Since the biosynthesis,modification,transportation,and degradation of plant hormones in plants change with time and space,their content level and distribution are highly dynamic.To monitor the production,transport,perception,and distribution of phytohormones within undamaged tissues,we require qualitative and quantitative tools endowed with remarkably high temporal and spatial resolution.Fluorescent probes are regarded as excellent tools for widespread plant imaging because of their high sensitivity and selectivity,reproducibility,real-time in situ detection,and uncomplicated mechanism elucidation.In this review,we provide a systematical overview of the progress in the sensing and imaging of phytohormone fluorescent probes and fluorescently labeled phytohormones to their receptors in plants.Moreover,forthcoming viewpoints and possible applications of these fluorescent probes within the realm of plants are also presented.We hold the conviction that the new perspective brought by this paper can promote the development of fluorescent probes,enabling them to have better detection performance in plant hormone imaging.展开更多
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions.Despite extensive investigation,testing various surgical repair techniques and neurotrophic...Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions.Despite extensive investigation,testing various surgical repair techniques and neurotrophic molecules,at present,a satisfactory method to ensuring successful recovery does not exist.For successful molecular therapy in nerve regeneration,it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth.Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination.Therefore,any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration.Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system,so they could be candidates for nervous system regeneration.This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration.Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves.We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves,and accelerates functional recovering.This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves.The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.展开更多
Anuran metamorphosis involves systematic transformations of individual organs in a thyroid hormone (TH)-dependent manner. Morphological and cellular studies have shown that the removal of larval or- gans/tissues such ...Anuran metamorphosis involves systematic transformations of individual organs in a thyroid hormone (TH)-dependent manner. Morphological and cellular studies have shown that the removal of larval or- gans/tissues such the tail and the tadpole intestinal epithelium is through programmed cell death or apop- tosis. Recent molecular investigations suggest that TH regulates metamorphosis by regulating target gene expression through thyroid hormone receptors (TRs), which are DNA-binding transcription factors. Cloning and characterization of TH response genes show that diverse groups of early response genes are induced by TH. The products of these TH response genes are believed to directly or indirectly affect the expression and/or functions of cell death genes, which are conserved at both sequence and function levels in different animal species. A major challenge for future research lies at determining the signaling pathways leading to the activation of apoptotic processes and whether different death genes are involved in the regulation of apoptosis in different tissues/organs to effect tissue-specific transformations.展开更多
Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechan...Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.展开更多
The thyroid hormones L-thyroxine and triiodo-L-thyronine have profound effects on postembryonic development of most vertebrates. Analysis of their action in mammals is vitiated by the exposure of the developing foetus...The thyroid hormones L-thyroxine and triiodo-L-thyronine have profound effects on postembryonic development of most vertebrates. Analysis of their action in mammals is vitiated by the exposure of the developing foetus to a number of maternal factors which do not allow one to specifically define the role of thyroid hormone (TH)or that of other hormones and factors that modulate its action. Amphibian metamorphosis is obligatorily dependent on TH which can initiate all the diverse physiological manifestations of this postembryonic developmental process(morphogenesis, cell death, re-structuring, etc.) in free-living embryos and larvae of most anurans. This article will first describe the salient features of metamorphosis and its control by TH and other hormones. Emphasis will be laid on the key role played by TH receptor (TR), in particular the phenomenon of TR gene autoinduction, in initiating the developmental action of TH. Finally, it will be argued that the findings on the control of amphibian metamorphosis enhance our understanding of the regulation of postembryonic development by TH in other vertebrate species.展开更多
Objective: The purpose of the study was to investigate the effects of parathyroid hormone and parathyroid hormone receptor monoclonal antibody on in vitro growth and proliferation of human medullary thyroid carcinoma...Objective: The purpose of the study was to investigate the effects of parathyroid hormone and parathyroid hormone receptor monoclonal antibody on in vitro growth and proliferation of human medullary thyroid carcinoma cell lines. Methods: The medullary thyroid carcinoma cell line was cultured in vitro, with parathyroid hormone and parathyroid hormone receptor monoclonal antibody treatment intervention, the growth of the cells was observed under an inverted contrast micro scope, the MTT assay was used to detect the cell growth inhibition rate. Results: Under the inverted contrast microscope, the cells changed significantly, the parathyroid hormone and parathyroid hormone receptor monoclonal antibodies can effectively inhibit the proliferation of medullary thyroid cancer cells in a time and dose dependent. When parathyroid hormone concentra tion reached a concentration of 2.0 IJmol/L, the parathyroid hormone receptor monoclonal antibody reached a concentration of 1.0 μmol/L, the cell growth was most significantly inhibited (P 〈 0.05). Conclusion: Parathyroid hormone and parathyroid hormone receptor monoclonal antibody were able to inhibit the proliferation of medullary thyroid carcinoma cells and signifi cantly reduce the proliferation index.展开更多
The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and...The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates proliferation and/or differentiated actions of multiple cell types in bone including chondrocytes, osteoblasts and osteoclasts. Thyroid hormone effects on the target cells are mediated via ligand-inducible nuclear receptors/transcription factors, thyroid hormone receptor (TR) a and ~, of which TRa seems to be critically important in regulating bone cell functions. In terms of mechanisms for thyroid hormone action, studies suggest that thyroid hormone regulates a number of key growth factor signaling pathways including insulin-like growth factor-I, parathyroid hormone related protein, fibroblast growth factor, Indian hedgehog and Wnt to influence skeletal growth. In this review we describe findings from various genetic mouse models and clinical mutations of thyroid hormone signaling related mutations in humans that pertain to the role and mechanism of action of thyroid hormone in the regulation of skeletal growth and maintenance.展开更多
The development of mammary glands, endocrine hormone concentrations and the gene expression of related receptors were measured in ovariectomized virgin rats after adminstration of an estrogen-like plant extract, rutin...The development of mammary glands, endocrine hormone concentrations and the gene expression of related receptors were measured in ovariectomized virgin rats after adminstration of an estrogen-like plant extract, rutin. Thirty-two ovariectomized virgin Wistar rats were randomly assigned to 4 treatments with 8 animals each: gastric infusion of 2 mL normal saline per unovariectomized rat per day (Sham), gastric infusion of 2 mL normal saline per ovariectomized rat per day (Ova), gastric infusion of 60 mg rutin kg-1 body weight (BW) per ovariectomized rat per day (Ova+Rut), or intramuscular injection of 60 ug estradiol kg-1 BW per ovariectomized rat weekly (Ova+Est). Samples of blood and mammary glands were harvested to determine the levels of estrogen (E2), prolactin (PRL) and growth hormone (GH), and the gene expression of estrogen receptors (ER), prolactin receptors (PRLR) and growth hormone receptors (GHR) with radioimmunoassy (RIA) and RT-PCR technology, respectively. The E2 concentration in plasma and gland tissues from the rats of Ovx+Rut or Ovx+Est was higher than that of Ovx (P〈0.05), but the plasma E2 concentration from the rats of Ovx+Rut was lower than that of Sham (P〈0.05). The order of the PRL concentration in plasma and gland tissues was Ovx〈Ovx+Rut〈Ovx+Est 〈Sham, and the difference in each treatment (P〈0.05). The plasma GH concentration was lower in Ovx than in Ovx+Rut or Ovx+Est, and lower in Ovx+Rut than in Sham (P〈0.05). The GH concentration in gland tissues was lower in Ovx than in Ovx+Rut or Ovx+Est (P〈0.05), and lower in Ovx+Rut than in Sham (P〈0.05). The gene expression of ER in gland tissues was increased in an order as Ovx〈Ovx+Rut〈Ovx+Est〈Sham (P〈0.05), and PRLR, GHR showed the same trend. In conclusion, adminstration of rutin increased the E2 concentration in plasma and mammary glands, promoted pituitary PRL and GH release, up-regulated the gene expression of ER, PRLR and GHR, and stimulated mammary development in ovariectomized virgin rats.展开更多
This study was designed to investigate the effect of neoadjuvant chemotherapy on the expression of hormone receptors and Ki67 in Chinese female breast cancer patients. The expression of estrogen receptor(ER), proges...This study was designed to investigate the effect of neoadjuvant chemotherapy on the expression of hormone receptors and Ki67 in Chinese female breast cancer patients. The expression of estrogen receptor(ER), progesterone receptor(PR) and Ki67 among 525 neoadjuvant chemotherapy cases was studied by immunohistochemistry.Differences between specimens made through preoperative core needle biopsy and excised tissue biopsy were observed. The positive rates of ER, PR and Ki67 in core needle biopsy and excised tissue biopsy were 65.3% and 63.2%, 51.0% and 42.6%, 65.6% and 43.4%, respectively. The expression of ER, PR and Ki67 in core needle biopsy and excised tissue biopsy had no statistically significant difference. However, after neoadjuvant chemotherapy, the discordance rates of ER, PR and Ki67 were 15.2%(79/521), 26.9%(140/520) and 44.8%(225/502), respectively. The ER, PR and Ki67 status changed from positive to negative in 7.5%(39/521), 13.3%(69/520) and 21.1%(106/502) of the patients, whereas ER, PR and Ki67 status changed from negative to positive in 7.7%(40/521), 13.6%(71/520)and 23.7%(119/502) of the patients, respectively. These results showed that the status of some biomarkers changes after neoadjuvant chemotherapy and biomarker status needs to be reexamined to optimize adjuvant systemic therapy and better prognosis assessment.展开更多
Background: Obesity is a major risk factor for endometrial carcinoma, and we aim to assess markers of carcinogenesis including PTEN and Ki-67 and hormone receptors profile including ER, PR and AR before and after bari...Background: Obesity is a major risk factor for endometrial carcinoma, and we aim to assess markers of carcinogenesis including PTEN and Ki-67 and hormone receptors profile including ER, PR and AR before and after bariatric surgery to find out its effects in reducing endometrial carcinoma risk in morbid obese females. Patients and methods: The study included 80 females with morbid obesity (BMI > 40 Kg/m2) who underwent bariatric surgery. All were sampled by Pipelle biopsy at baseline and 12 months after operation and examined histopathologically and immunohistochemically for Ki-67, PTEN, ER, PR and AR. Results: Sixty two out of 80 (62/80) females showed no pathological abnormalities;4 had polyps;7 had simple endometrial hyperplasia;4 had atypical endometrial hyperplasia and 3 had endometrial carcinoma. In total, 34 females underwent gastric bypass operation (42.5%) and 46 underwent a sleeve gastrectomy operation (57.5%). There was a statistically significant difference between baseline weight and BMI before and after surgery (p < 0.001). Of the 7 women with simple hyperplasia, resolution occurred in 5 within 7 months of surgery. Three of 4 females with atypical hyperplasia (AH) showed resolution after 9 months. Mean Ki-67 score was lower at 12 months (p < 0.001) after surgery. 43/77 (55.8%) baseline biopsies were glandular PTEN null, including 9/15 of the women with baseline endometrial abnormalities, of whom 5/15 regained glandular PTEN expression as their endometrial abnormalities resolved. There was a significant reduction in ER score after surgery (p < 0.001). PR H-scores were not significantly different post-operatively (p = 0.193). AR H-scores were higher significantly in pre-operative biopsies than post-operative ones (p < 0.001). Conclusion: Females with morbid obesity have a higher risk of harboring endometrial abnormalities even if asymptomatic. However, the endometrial pathology and the high ER and PR expression can be normalized within one year without medical treatment, signifying the role of bariatric surgery-induced weight loss in reducing the risk of endometrial neoplasia development. Also, the marked weight loss occurring after bariatric surgery induces highly significant endometrial change as resolution of atypical hyperplasia, and molecular changes as reduction of Ki-67 and restoration of PTEN that are associated with transition of endometrium from high to low risk.展开更多
The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on ...The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on experimental results and data collection. Based on repeated exposure toxicity tests on mammals and extensive research, the present study used BMDS240 Software to derive a benchmark dose, and analyzed the accuracy and uncertainty, and similarity with other studies. Test results on triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) demonstrated that all the indicators presented a non-monotonous dose-effect relationship clearly, except TSH in male rats exposed to 0-1000 mg/kg BW per day. Therefore, RfDs were derived from different critical effects. In summary, RfD for mammals in the present study was found to be 0.6 mg/kg per day.展开更多
Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones(THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, on...Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones(THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop C hlamys farreri. Here, two deiodinases were cloned in the Pacific oyster C rassostrea gigas( Cg Dx and C g Dy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase c DNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid C apitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of C g Dx and Cg Dy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of C g Dx and Cg Dy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.展开更多
The serum thyroid hormone and plasma catecholamine were examined in 18 male and 2 female members of the Chinese Antarctic Expedition (who spent the 2000 or 2001 austral winter at the Great Wall Station) . The changes ...The serum thyroid hormone and plasma catecholamine were examined in 18 male and 2 female members of the Chinese Antarctic Expedition (who spent the 2000 or 2001 austral winter at the Great Wall Station) . The changes of serum thyroid hormone i. e. total thyroxine (TT4) and free T4 (FT4) , total triodothyronine (TT3) and freeT3 ( FT3 ) , thyroid stimulating hormone ( TSH ) and plasma catecholamine, including norepinephrine (NE) , epinephrine ( E) and dopamine ( DA ) , were investigated by Chemoluminescence Immunoassay (CLIA) and High Performance Liquid Chromatography with electrochemical detection (HPLC-ECD) . Samples were taken at different time; (1)1 day before departure to Antarctica (16th expedition 1999/12/ 09; 17th expedition 2000/12/06). (2) 1 day after returned to China after living 54 weeks in Antarctica ( 16th expedition 2000/12/25 ; 17th expedition 2001/12/25 ). Comparing the data of before departure and returned, results showed that there was a significant decrease in the contents of TT4 (P <0. 01) with no significant change in the content of TT3 , FT3 and FT4. It was also found that the content of TSH increased significantly (P <0. 001) ; No significant changes of plasma NE and DA were found but the content of E decreased significantly ( P < 0. 001) . The results indicated that the special Antarctic environment led to a restrain effect on the thyroid function and the level of plasma E in Antarctic expedition members. Both the thyroid and adrenal medulla system were associated in response to the Antarctic systemic stress.展开更多
基金Supported by Research Award from KaroBio AB, Sweden (to Parini P)
文摘Reverse cholesterol transport (RCT) is a complex process which transfers cholesterol from peripheral cells to the liver for subsequent elimination from the body via feces. Thyroid hormones (THs) affect growth, develop- ment, and metabolism in almost all tissues. THs exert their actions by binding to thyroid hormone receptors (TRs). There are two major subtypes of TRs, TRα and TRβ, and several isoforms (e.g. TRα1, TRα2, TRβ1, and TRβ2). Activation of TRα1 affects heart rate, whereas activation of TRβ1 has positive effects on lipid and lipoprotein metabolism. Consequently, particular interest has been focused on the development of thyromimetic compounds targeting TRβ1, not only because of their ability to lower plasma cholesterol but also due their ability to stimulate RCT, at least in pre-clinical models. In this review we focus on THs, TRs, and on the effects of TRβ1-modulating thyromimetics on RCT in various animal models and in humans.
基金funded by the Important Research Project of Chinese Academy of Sciences (KJZG-EW-L13)2015 Western Light Talent Culture Project of the Chinese Academy of Sciences (Y6C3021)the Basic Application Project of Sichuan Province (2017JY0339)
文摘To explore and enrich the molecular mechanisms of thyroid hormone receptors (TRs) in the metamorphosis of amphibians, the cDNA sequences of TRa and TRβ in Microhyla fissipes were cloned and characterized. TRa was 1 706 bp in length with an open reading frame (ORF) of 1 257 bp encoding a predicted protein of 418 amino acids and TRβ was 1 422 bp with an ORF of 1 122 bp encoding a predicted protein of 373 amino acids. Their protein sequences contained 4 conserved domains of the nuclear receptor superfamily with two highly conserved cysteine-rich zinc fingers in the DNA-binding domain, whereas TRβ was 42 amino acids shorter in its A/B domain than TRot. Highly-conserved sequences and structures indicated their conserved functions during metamorphosis. TRa expression reached peak at 12 h and then decreased from 12 h to 48 h. While dramatically up-regulated TRβ was observed after exposure of T3 within 24 h, and it was down-regulated from 24 h to 48 h. The expression pattern of TRβ is similar to that in the natural metamorphosis. Furthermore, tadpoles treated 24 h also resembled the climax of metamorphosis tadpoles and TRβ expression had higher responsiveness than TRa to T3 in M. fissipes. These results suggest M. fissipes may serve as the model to assay environmental compounds on TH signaling disruption.
文摘The human adenovirus type 5 early region 1A (E1A) is one of two oncogenes present in the adenovirus genome and functions by interfering with the activities of cellular regulatory proteins. The E1A gene is alternatively spliced to yield five products. Earlier studies have revealed that E1A can regulate the function of thyroid hormone (T3) receptors (TRs). However, analysis in yeast compared with transfection studies in mammalian cell cultures yields surprisingly different effects. Here, we have examined the effect of E1A on TR function by using the frog oocyte in vivo system, where the effects of E1A can be studied in the context of chromatin. We demonstrate that different isoforms of E1A have distinct effects on TR function. The two longest forms inhibit both the repression by unliganded TR and activation by T3-bound TR. We further show that E1A binds to unliganded TR to displace the endogenous corepressor nuclear receptor corepressor, thus relieving the repression by unliganded TR. On the other hand, in the presence of T3, E1A inhibits gene activation by T3-bound TR indirectly, through a mechanism that requires its binding domain for the general coactivator p300. Taken together, our results thus indicate that E1A affects TR function through distinct mechanisms that are dependent upon the presence or absence of T3.
文摘The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.
文摘BACKGROUND The imbalance of hormone levels in the body is closely related to the occurrence and progression of schizophrenia,especially thyroid hormones.AIM To study the relationship between triiodothyronine(T3),thyroxine(T4),free T3(FT3),free T4(FT4),thyroid stimulating hormone(TSH)and schizophrenia.METHODS In this study,100 schizophrenia patients were selected from our hospital between April 2022 and April 2024.Their clinical data were analyzed retrospectively.Based on the Positive and Negative Syndrome Scale(PANSS)score,patients were divided into mild(1-3 points,n=39),moderate(4 points,n=45),and severe groups(5-7 points,n=16).Additionally,55 healthy individuals served as a control group.Venous blood samples were collected to measure T3,T4,FT3,FT4,TSH,and cortisol concentrations,analyzing their relationship with PANSS scores.RESULTS The serum levels of T3,FT3,FT4,TSH and cortisol in the schizophrenia group were lower than those in the control group(P<0.05).With the increase of the severity of the disease,the concentrations of T3 and T4 decreased,while the con-centrations of TSH and cortisol increased(P<0.05).The concentrations of TSH and cortisol were positively correlated with the PANSS score,while T3 and T4 were negatively correlated with the PANSS score(P<0.05).The receiver ope-rating characteristic curve results showed that T3,T4,TSH,and cortisol had good efficacy in the diagnosis of schizophrenia.Logistic results showed that decreased T3 level,decreased T4 level,decreased TSH level and increased cortisol level may be independent risk factors for schizophrenia.CONCLUSION Thyroid hormone levels are associated with the severity of schizophrenia symptoms,which can provide new solutions for the diagnosis and treatment of schizophrenia.
文摘The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.
基金Supported by the Xuanwu Hospital Capital Medical University Science Program for Fostering Young Scholars,No.YC20220113the Pilot Project for Public,No.Beijing Medical Research 2021-8.
文摘BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has been insufficient attention given to the relationship between thyroid hormone sensitivity and dyslipidemia in the T2DM population,particularly concerning non-high-density lipoprotein cholesterol(non-HDL-C).AIM To clarify the association between thyroid hormone sensitivity and dyslipidemia in patients with T2DM.METHODS In this cross-sectional study,thyroid hormone sensitivity indices,the thyroid feedback quantile-based index(TFQI),the thyroid-stimulating hormone index(TSHI),the thyrotrophic T4 resistance index(TT4RI),and the free triiodothyronine(FT3)/free thyroxine(FT4)ratio were calculated.Logistic regression analysis was performed to determine the associations between those composite indices and non-HDL-C levels.Random forest variable importance and Shapley Additive Explanations(SHAP)summary plots were used to identify the strength and direction of the association between hyper-non-HDL-C and its major predictor.RESULTS Among the 994 participants,389(39.13%)had high non-HDL-C levels.Logistic regression analysis revealed that the risk of hyper-non-HDL-C was positively correlated with the TFQI(OR:1.584;95%CI:1.088-2.304;P=0.016),TSHI(OR:1.238;95%CI:1.034-1.482;P=0.02),and TT4RI(OR:1.075;95%CI:1.006-1.149;P=0.032)but was not significantly correlated with the FT3/FT4 ratio.The relationships between composite indices of the thyroid system and non-HDL-C levels differed according to sex.An increased risk of hyper-non-HDL-C was associated with elevated TSHI levels in men(OR:1.331;95%CI:1.003-1.766;P=0.048)but elevated TFQI levels in women(OR:2.337;95%CI:1.4-3.901;P=0.001).Among the analyzed variables,the average SHAP values were highest for TSHI,followed by TT4RI.CONCLUSION Impaired sensitivity to thyroid hormones was associated with high non-HDL-C levels in patients with T2DM.
基金supported by the National Key Research and Development Program of China(2022YFD1700300,2022YFE0199800)the National Natural Science Foundation of China(32072443,82104065,32061143045)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20201323)the Distinguished Young Research Project of Anhui Higher Education Institution(2022AH020035).
文摘Exploring plant behavior at the cellular scale in a minimally invasive manner is critical to understanding plant adaptation to the environment.Phytohormones play vital regulatory roles in multiple aspects of plant growth and development and acclimation to environmental changes.Since the biosynthesis,modification,transportation,and degradation of plant hormones in plants change with time and space,their content level and distribution are highly dynamic.To monitor the production,transport,perception,and distribution of phytohormones within undamaged tissues,we require qualitative and quantitative tools endowed with remarkably high temporal and spatial resolution.Fluorescent probes are regarded as excellent tools for widespread plant imaging because of their high sensitivity and selectivity,reproducibility,real-time in situ detection,and uncomplicated mechanism elucidation.In this review,we provide a systematical overview of the progress in the sensing and imaging of phytohormone fluorescent probes and fluorescently labeled phytohormones to their receptors in plants.Moreover,forthcoming viewpoints and possible applications of these fluorescent probes within the realm of plants are also presented.We hold the conviction that the new perspective brought by this paper can promote the development of fluorescent probes,enabling them to have better detection performance in plant hormone imaging.
基金supported by the Swiss National Science FoundationSUVA foundationNovartis foundation
文摘Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions.Despite extensive investigation,testing various surgical repair techniques and neurotrophic molecules,at present,a satisfactory method to ensuring successful recovery does not exist.For successful molecular therapy in nerve regeneration,it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth.Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination.Therefore,any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration.Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system,so they could be candidates for nervous system regeneration.This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration.Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves.We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves,and accelerates functional recovering.This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves.The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
文摘Anuran metamorphosis involves systematic transformations of individual organs in a thyroid hormone (TH)-dependent manner. Morphological and cellular studies have shown that the removal of larval or- gans/tissues such the tail and the tadpole intestinal epithelium is through programmed cell death or apop- tosis. Recent molecular investigations suggest that TH regulates metamorphosis by regulating target gene expression through thyroid hormone receptors (TRs), which are DNA-binding transcription factors. Cloning and characterization of TH response genes show that diverse groups of early response genes are induced by TH. The products of these TH response genes are believed to directly or indirectly affect the expression and/or functions of cell death genes, which are conserved at both sequence and function levels in different animal species. A major challenge for future research lies at determining the signaling pathways leading to the activation of apoptotic processes and whether different death genes are involved in the regulation of apoptosis in different tissues/organs to effect tissue-specific transformations.
文摘Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.
文摘The thyroid hormones L-thyroxine and triiodo-L-thyronine have profound effects on postembryonic development of most vertebrates. Analysis of their action in mammals is vitiated by the exposure of the developing foetus to a number of maternal factors which do not allow one to specifically define the role of thyroid hormone (TH)or that of other hormones and factors that modulate its action. Amphibian metamorphosis is obligatorily dependent on TH which can initiate all the diverse physiological manifestations of this postembryonic developmental process(morphogenesis, cell death, re-structuring, etc.) in free-living embryos and larvae of most anurans. This article will first describe the salient features of metamorphosis and its control by TH and other hormones. Emphasis will be laid on the key role played by TH receptor (TR), in particular the phenomenon of TR gene autoinduction, in initiating the developmental action of TH. Finally, it will be argued that the findings on the control of amphibian metamorphosis enhance our understanding of the regulation of postembryonic development by TH in other vertebrate species.
基金Supported by a grant from the Science and Technology Plan Projects of Lanzhou(No.2013-3-38)
文摘Objective: The purpose of the study was to investigate the effects of parathyroid hormone and parathyroid hormone receptor monoclonal antibody on in vitro growth and proliferation of human medullary thyroid carcinoma cell lines. Methods: The medullary thyroid carcinoma cell line was cultured in vitro, with parathyroid hormone and parathyroid hormone receptor monoclonal antibody treatment intervention, the growth of the cells was observed under an inverted contrast micro scope, the MTT assay was used to detect the cell growth inhibition rate. Results: Under the inverted contrast microscope, the cells changed significantly, the parathyroid hormone and parathyroid hormone receptor monoclonal antibodies can effectively inhibit the proliferation of medullary thyroid cancer cells in a time and dose dependent. When parathyroid hormone concentra tion reached a concentration of 2.0 IJmol/L, the parathyroid hormone receptor monoclonal antibody reached a concentration of 1.0 μmol/L, the cell growth was most significantly inhibited (P 〈 0.05). Conclusion: Parathyroid hormone and parathyroid hormone receptor monoclonal antibody were able to inhibit the proliferation of medullary thyroid carcinoma cells and signifi cantly reduce the proliferation index.
基金Financial support was received from funding agencies in the United States (NIH grant AR048139 and VA merit review grant)
文摘The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates proliferation and/or differentiated actions of multiple cell types in bone including chondrocytes, osteoblasts and osteoclasts. Thyroid hormone effects on the target cells are mediated via ligand-inducible nuclear receptors/transcription factors, thyroid hormone receptor (TR) a and ~, of which TRa seems to be critically important in regulating bone cell functions. In terms of mechanisms for thyroid hormone action, studies suggest that thyroid hormone regulates a number of key growth factor signaling pathways including insulin-like growth factor-I, parathyroid hormone related protein, fibroblast growth factor, Indian hedgehog and Wnt to influence skeletal growth. In this review we describe findings from various genetic mouse models and clinical mutations of thyroid hormone signaling related mutations in humans that pertain to the role and mechanism of action of thyroid hormone in the regulation of skeletal growth and maintenance.
基金funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2006BAD12B04-04)
文摘The development of mammary glands, endocrine hormone concentrations and the gene expression of related receptors were measured in ovariectomized virgin rats after adminstration of an estrogen-like plant extract, rutin. Thirty-two ovariectomized virgin Wistar rats were randomly assigned to 4 treatments with 8 animals each: gastric infusion of 2 mL normal saline per unovariectomized rat per day (Sham), gastric infusion of 2 mL normal saline per ovariectomized rat per day (Ova), gastric infusion of 60 mg rutin kg-1 body weight (BW) per ovariectomized rat per day (Ova+Rut), or intramuscular injection of 60 ug estradiol kg-1 BW per ovariectomized rat weekly (Ova+Est). Samples of blood and mammary glands were harvested to determine the levels of estrogen (E2), prolactin (PRL) and growth hormone (GH), and the gene expression of estrogen receptors (ER), prolactin receptors (PRLR) and growth hormone receptors (GHR) with radioimmunoassy (RIA) and RT-PCR technology, respectively. The E2 concentration in plasma and gland tissues from the rats of Ovx+Rut or Ovx+Est was higher than that of Ovx (P〈0.05), but the plasma E2 concentration from the rats of Ovx+Rut was lower than that of Sham (P〈0.05). The order of the PRL concentration in plasma and gland tissues was Ovx〈Ovx+Rut〈Ovx+Est 〈Sham, and the difference in each treatment (P〈0.05). The plasma GH concentration was lower in Ovx than in Ovx+Rut or Ovx+Est, and lower in Ovx+Rut than in Sham (P〈0.05). The GH concentration in gland tissues was lower in Ovx than in Ovx+Rut or Ovx+Est (P〈0.05), and lower in Ovx+Rut than in Sham (P〈0.05). The gene expression of ER in gland tissues was increased in an order as Ovx〈Ovx+Rut〈Ovx+Est〈Sham (P〈0.05), and PRLR, GHR showed the same trend. In conclusion, adminstration of rutin increased the E2 concentration in plasma and mammary glands, promoted pituitary PRL and GH release, up-regulated the gene expression of ER, PRLR and GHR, and stimulated mammary development in ovariectomized virgin rats.
基金supported by National Natural Science Foundation of China (NSFC) (81372851)
文摘This study was designed to investigate the effect of neoadjuvant chemotherapy on the expression of hormone receptors and Ki67 in Chinese female breast cancer patients. The expression of estrogen receptor(ER), progesterone receptor(PR) and Ki67 among 525 neoadjuvant chemotherapy cases was studied by immunohistochemistry.Differences between specimens made through preoperative core needle biopsy and excised tissue biopsy were observed. The positive rates of ER, PR and Ki67 in core needle biopsy and excised tissue biopsy were 65.3% and 63.2%, 51.0% and 42.6%, 65.6% and 43.4%, respectively. The expression of ER, PR and Ki67 in core needle biopsy and excised tissue biopsy had no statistically significant difference. However, after neoadjuvant chemotherapy, the discordance rates of ER, PR and Ki67 were 15.2%(79/521), 26.9%(140/520) and 44.8%(225/502), respectively. The ER, PR and Ki67 status changed from positive to negative in 7.5%(39/521), 13.3%(69/520) and 21.1%(106/502) of the patients, whereas ER, PR and Ki67 status changed from negative to positive in 7.7%(40/521), 13.6%(71/520)and 23.7%(119/502) of the patients, respectively. These results showed that the status of some biomarkers changes after neoadjuvant chemotherapy and biomarker status needs to be reexamined to optimize adjuvant systemic therapy and better prognosis assessment.
文摘Background: Obesity is a major risk factor for endometrial carcinoma, and we aim to assess markers of carcinogenesis including PTEN and Ki-67 and hormone receptors profile including ER, PR and AR before and after bariatric surgery to find out its effects in reducing endometrial carcinoma risk in morbid obese females. Patients and methods: The study included 80 females with morbid obesity (BMI > 40 Kg/m2) who underwent bariatric surgery. All were sampled by Pipelle biopsy at baseline and 12 months after operation and examined histopathologically and immunohistochemically for Ki-67, PTEN, ER, PR and AR. Results: Sixty two out of 80 (62/80) females showed no pathological abnormalities;4 had polyps;7 had simple endometrial hyperplasia;4 had atypical endometrial hyperplasia and 3 had endometrial carcinoma. In total, 34 females underwent gastric bypass operation (42.5%) and 46 underwent a sleeve gastrectomy operation (57.5%). There was a statistically significant difference between baseline weight and BMI before and after surgery (p < 0.001). Of the 7 women with simple hyperplasia, resolution occurred in 5 within 7 months of surgery. Three of 4 females with atypical hyperplasia (AH) showed resolution after 9 months. Mean Ki-67 score was lower at 12 months (p < 0.001) after surgery. 43/77 (55.8%) baseline biopsies were glandular PTEN null, including 9/15 of the women with baseline endometrial abnormalities, of whom 5/15 regained glandular PTEN expression as their endometrial abnormalities resolved. There was a significant reduction in ER score after surgery (p < 0.001). PR H-scores were not significantly different post-operatively (p = 0.193). AR H-scores were higher significantly in pre-operative biopsies than post-operative ones (p < 0.001). Conclusion: Females with morbid obesity have a higher risk of harboring endometrial abnormalities even if asymptomatic. However, the endometrial pathology and the high ER and PR expression can be normalized within one year without medical treatment, signifying the role of bariatric surgery-induced weight loss in reducing the risk of endometrial neoplasia development. Also, the marked weight loss occurring after bariatric surgery induces highly significant endometrial change as resolution of atypical hyperplasia, and molecular changes as reduction of Ki-67 and restoration of PTEN that are associated with transition of endometrium from high to low risk.
基金supported by the National Natural Science Foundation of China(No.21377045)Joint Innovation Funding of Production and Research-a Prospective Joint Research Project(BY2015027-05)
文摘The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on experimental results and data collection. Based on repeated exposure toxicity tests on mammals and extensive research, the present study used BMDS240 Software to derive a benchmark dose, and analyzed the accuracy and uncertainty, and similarity with other studies. Test results on triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) demonstrated that all the indicators presented a non-monotonous dose-effect relationship clearly, except TSH in male rats exposed to 0-1000 mg/kg BW per day. Therefore, RfDs were derived from different critical effects. In summary, RfD for mammals in the present study was found to be 0.6 mg/kg per day.
基金Supported by the National Natural Science Foundation of China(Nos.31372515,31402285)the National Basic Research Program of China(973 Program)(No.2010CB126401)the National High Technology Research and Development Program(863 Program)(No.2012AA10A405)
文摘Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones(THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop C hlamys farreri. Here, two deiodinases were cloned in the Pacific oyster C rassostrea gigas( Cg Dx and C g Dy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase c DNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid C apitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of C g Dx and Cg Dy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of C g Dx and Cg Dy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.
基金support by Chinese National Science Foundation(No.3997801)
文摘The serum thyroid hormone and plasma catecholamine were examined in 18 male and 2 female members of the Chinese Antarctic Expedition (who spent the 2000 or 2001 austral winter at the Great Wall Station) . The changes of serum thyroid hormone i. e. total thyroxine (TT4) and free T4 (FT4) , total triodothyronine (TT3) and freeT3 ( FT3 ) , thyroid stimulating hormone ( TSH ) and plasma catecholamine, including norepinephrine (NE) , epinephrine ( E) and dopamine ( DA ) , were investigated by Chemoluminescence Immunoassay (CLIA) and High Performance Liquid Chromatography with electrochemical detection (HPLC-ECD) . Samples were taken at different time; (1)1 day before departure to Antarctica (16th expedition 1999/12/ 09; 17th expedition 2000/12/06). (2) 1 day after returned to China after living 54 weeks in Antarctica ( 16th expedition 2000/12/25 ; 17th expedition 2001/12/25 ). Comparing the data of before departure and returned, results showed that there was a significant decrease in the contents of TT4 (P <0. 01) with no significant change in the content of TT3 , FT3 and FT4. It was also found that the content of TSH increased significantly (P <0. 001) ; No significant changes of plasma NE and DA were found but the content of E decreased significantly ( P < 0. 001) . The results indicated that the special Antarctic environment led to a restrain effect on the thyroid function and the level of plasma E in Antarctic expedition members. Both the thyroid and adrenal medulla system were associated in response to the Antarctic systemic stress.