We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of...We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of HEMTs with side-etched region lengths(L_(Side)) of 300,412 and 1070 nm were analyzed.With the increase in L_(Side),the kink effect became notable in the DC characteristics,which resulted from the surface state and the effect of impact ionization.The kink effect was qualitatively explained through energy band diagrams,and then eased off by reducing the L_(Side).Meanwhile,the L_(Side) dependence of the radio frequency characteristics,which were influenced by the parasitic capacitance,as well as the parasitic resistance of the source and drain,was studied.This work will be of great importance in fabricating high-performance InP HEMTs.展开更多
基金Project supported by the National Basic Research Program of China(No.2010CB327502)
文摘We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of HEMTs with side-etched region lengths(L_(Side)) of 300,412 and 1070 nm were analyzed.With the increase in L_(Side),the kink effect became notable in the DC characteristics,which resulted from the surface state and the effect of impact ionization.The kink effect was qualitatively explained through energy band diagrams,and then eased off by reducing the L_(Side).Meanwhile,the L_(Side) dependence of the radio frequency characteristics,which were influenced by the parasitic capacitance,as well as the parasitic resistance of the source and drain,was studied.This work will be of great importance in fabricating high-performance InP HEMTs.