Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder the...Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder their practical applications.Functional gradient material(FGM)design endows the electrode materials with property gradient,thus providing great opportunities to address the kinetics and stability obstacles.To date,still no review or perspective has covered recent advancements in gradient design at multiple scales for boosting lithium battery performances.To fill this void,this work provides a timely and comprehensive overview of this exciting and sustainable research field.We begin by overviewing the fundamental features of FGM and the rationales of gradient design for improved electrochemical performance.Then,we comprehensively review FGM design for rechargeable lithium batteries at various scales,including natural or artificial solid electrolyte interphase(SEI)at the nanoscale,micrometer-scale electrode particles,and macroscale electrode films.The link between gradient structure design and improved electrochemical performance is particularly highlighted.The most recent research into constructing novel functional gradients,such as valence and temperature gradients,has also been explored.Finally,we discussed the current constraints and future scope of FGM in rechargeable lithium batteries,aiming to inspire the development of novel FGM for next-generation high-performance lithium batteries.展开更多
Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal...Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.展开更多
Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial re...Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial rechargeable lithium batteries(LIBs) due to their outstanding dissociation ability to lithium salts.However,volatility and fluidity result in their inevitable demerits like leakage and potential safety problem of the final LIBs.Here we for the first time device a subtle method to prepare a novel thermal-stable and non-fluid poly(carbonate) solid-state electrolyte to merge EC with lithium carriers.To this aim,a series of carbonate substituted imidazole ionic plastic crystals(G-NTOC) with different polymerization degrees have been synthesized.The resulting G-NTOC shows an excellent solid-state temperature window(R.T.-115℃).More importantly,the maximum ionic conductivity and lithium transference number of the prepared G-NTOC reach 0.36 × 10^(-3) S cm^(-1) and 0.523 at 30℃,respectively.Galvanostatic cycling test results reveal that the developed G-NTOC solid-state electrolytes are favorable to restraining the growth of lithium dendrite due to the excellent compatibility between the electrode and the produced plastic crystal electrolyte.The fabricated LiIG-NTOCILiFeP04 all-solid-state cell initially delivers a maximum discharge capacity of 152.1 mAh g^(-1) at the discharge rate of 0.1 C.After chargingdischarging the cell for 60 times,Coulombic efficiency of the solid-state cell still exceeds 97%.Notably,the LiIG-NTOCILiFeP04 cell can stably light a commercial LED with a rated power of 0.06 W for more than1 h at 30℃,and the output power nearly maintains unchanged with the charging-discharging cycling test,implying a sizeable potential application in the next generation of solid-state LIBs.展开更多
The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be...The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs.展开更多
Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating su...Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.展开更多
Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability ...Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.展开更多
The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of hig...The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of high–efficiency sulfur host is increasingly demanded to accelerate the polysulfides conversion during charge/discharge process. Herein, we propose a macro–mesoporous sulfur host(Co@NC), which comprises highly dispersed cobalt nanoparticles embedding in N–doped ultrathin carbon nanosheets. Co@NC is simply synthesized via a carbon nitride–derived pyrolysis approach. Owing to the highly conductive graphene–like matrix and well defined porous structure, the designed multifunctional Co@NC host enables rapid electron/ion transport, electrolyte penetration and effective sulfur trapping. More significantly,N heteroatoms and homogeneous Co nanocatalysts in the graphitic carbon nanosheets could serve as chemisorption sites as well as electrocatalytic centers for sulfur species. These Co–N active sites can synergistically facilitate the redox conversion kinetics and mitigate the shuttling of polysulfides, thus leading to improved electrochemical cycling performance of Li–S batteries. As a consequence, the S/Co@NC cathode demonstrates high initial specific capacity(1505 mA h g-1 at 0.1 C) and excellent cycling stability at 1 C over 300 cycles, giving rise to a capacity retention of 91.7% and an average capacity decline of 0.03%cycle-1.展开更多
The chemical composition of the passivating layer formed on nano SnO2 anodes in 1 M LiClO4+ (ethylene carbonate)EC + (dimethyl carbonate)DMC at different charge/discharge states in lithium secondary batteries wa...The chemical composition of the passivating layer formed on nano SnO2 anodes in 1 M LiClO4+ (ethylene carbonate)EC + (dimethyl carbonate)DMC at different charge/discharge states in lithium secondary batteries was studied using extra reflectance FTIR spectra. Results show that solvent decomposition reaction that generally occurs on the surface of carbon and alkali metal electrodes also takes place on nano-SnO2 anode, and the major constituent of the passivating layer is Li2CO3 and ROCO2Li. Formation of the passivating layer would certainly lead to the irreversible capacity loss.展开更多
The synthesis of CDMO from LiOH and EMD has been investigated by thermogravimetry and pow- der X-ray diffraction analysis.The results showed that it took place from below 100 to 400℃.When the proportion of Li:Mn in t...The synthesis of CDMO from LiOH and EMD has been investigated by thermogravimetry and pow- der X-ray diffraction analysis.The results showed that it took place from below 100 to 400℃.When the proportion of Li:Mn in the starting mixture was 3:7,the measured weight loss during this process was 7.40% for heat-treated EMD and 8.33% for non-heat-treated EMD.Based on these data and X-ray diffraction results the obtained product would be 3LiMn204 - MnO2.This material was es- sentially amorphous.It can insert 4.7 Li per 3LiMn_2O_4·MnO_2,leading to a capacity of 170- 200 mAh/g and demonstrated reasonable discharge and recharge cycle performance for both test cells and practical batteries.展开更多
Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on...Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.展开更多
Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium o...Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.展开更多
Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040...Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2](Li FSI) and Li[N(SO2CF3)2](Li TFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|Li FePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 m A/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.展开更多
Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide...Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.展开更多
High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realiz...High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.展开更多
One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high s...One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high specific capacity of about 650 mAh.g-1 at a current rate of 100 mA.g-1 after 40 cycles. They also exhibited high power capability at elevated current rates, i.e., 450 and 350 mAh.g 1 at current rates of 500 and 1000 mA.g 1, respectively. Formation of Mn3O4 and ZnO phases was identified by ex situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies after the initial discharge-charge cycle, which indicates that the ZnMn2O4 phase was converted to a nanocomposite of Mn3O4 and ZnO phases immediately after the electrochemical conversion reaction.展开更多
Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemi...Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy(EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry(CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA·h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5 - 4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.展开更多
The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2T...The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler抯 particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.52261160384 and 52072208)the Project of Department of Education of Guangdong Province(No.2022ZDZX3018)+2 种基金the Natural Science Foundation of Guangdong(No.2023A1515010020)the Innovation and Technology Fund(No.ITS-325-22FP)the Shenzhen Science and Technology Program(No.KJZD20230923114107014)。
文摘Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder their practical applications.Functional gradient material(FGM)design endows the electrode materials with property gradient,thus providing great opportunities to address the kinetics and stability obstacles.To date,still no review or perspective has covered recent advancements in gradient design at multiple scales for boosting lithium battery performances.To fill this void,this work provides a timely and comprehensive overview of this exciting and sustainable research field.We begin by overviewing the fundamental features of FGM and the rationales of gradient design for improved electrochemical performance.Then,we comprehensively review FGM design for rechargeable lithium batteries at various scales,including natural or artificial solid electrolyte interphase(SEI)at the nanoscale,micrometer-scale electrode particles,and macroscale electrode films.The link between gradient structure design and improved electrochemical performance is particularly highlighted.The most recent research into constructing novel functional gradients,such as valence and temperature gradients,has also been explored.Finally,we discussed the current constraints and future scope of FGM in rechargeable lithium batteries,aiming to inspire the development of novel FGM for next-generation high-performance lithium batteries.
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.
基金the financial support of the National Natural Science Foundation of China (21961044, 22169024)the Yunnan University’s Research Innovation Fund for graduate students (2021Y394)。
文摘Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial rechargeable lithium batteries(LIBs) due to their outstanding dissociation ability to lithium salts.However,volatility and fluidity result in their inevitable demerits like leakage and potential safety problem of the final LIBs.Here we for the first time device a subtle method to prepare a novel thermal-stable and non-fluid poly(carbonate) solid-state electrolyte to merge EC with lithium carriers.To this aim,a series of carbonate substituted imidazole ionic plastic crystals(G-NTOC) with different polymerization degrees have been synthesized.The resulting G-NTOC shows an excellent solid-state temperature window(R.T.-115℃).More importantly,the maximum ionic conductivity and lithium transference number of the prepared G-NTOC reach 0.36 × 10^(-3) S cm^(-1) and 0.523 at 30℃,respectively.Galvanostatic cycling test results reveal that the developed G-NTOC solid-state electrolytes are favorable to restraining the growth of lithium dendrite due to the excellent compatibility between the electrode and the produced plastic crystal electrolyte.The fabricated LiIG-NTOCILiFeP04 all-solid-state cell initially delivers a maximum discharge capacity of 152.1 mAh g^(-1) at the discharge rate of 0.1 C.After chargingdischarging the cell for 60 times,Coulombic efficiency of the solid-state cell still exceeds 97%.Notably,the LiIG-NTOCILiFeP04 cell can stably light a commercial LED with a rated power of 0.06 W for more than1 h at 30℃,and the output power nearly maintains unchanged with the charging-discharging cycling test,implying a sizeable potential application in the next generation of solid-state LIBs.
基金Acknowledgements This project was supported by the National Nature Science Foundation of China (Grant No. 71373141), and a special fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control (No. llZ02ESPCT).
文摘The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs.
文摘Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.
基金the Guangdong Provincial Natural Science Foundation(nos.2017A030313283,2017A030313083)National Natural Science Foundation of China(NSFC,no.51602109)。
文摘The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of high–efficiency sulfur host is increasingly demanded to accelerate the polysulfides conversion during charge/discharge process. Herein, we propose a macro–mesoporous sulfur host(Co@NC), which comprises highly dispersed cobalt nanoparticles embedding in N–doped ultrathin carbon nanosheets. Co@NC is simply synthesized via a carbon nitride–derived pyrolysis approach. Owing to the highly conductive graphene–like matrix and well defined porous structure, the designed multifunctional Co@NC host enables rapid electron/ion transport, electrolyte penetration and effective sulfur trapping. More significantly,N heteroatoms and homogeneous Co nanocatalysts in the graphitic carbon nanosheets could serve as chemisorption sites as well as electrocatalytic centers for sulfur species. These Co–N active sites can synergistically facilitate the redox conversion kinetics and mitigate the shuttling of polysulfides, thus leading to improved electrochemical cycling performance of Li–S batteries. As a consequence, the S/Co@NC cathode demonstrates high initial specific capacity(1505 mA h g-1 at 0.1 C) and excellent cycling stability at 1 C over 300 cycles, giving rise to a capacity retention of 91.7% and an average capacity decline of 0.03%cycle-1.
基金the Natural Science Foundation of Hubei Provine (No.2007ABA320)National 973 Key Program
文摘The chemical composition of the passivating layer formed on nano SnO2 anodes in 1 M LiClO4+ (ethylene carbonate)EC + (dimethyl carbonate)DMC at different charge/discharge states in lithium secondary batteries was studied using extra reflectance FTIR spectra. Results show that solvent decomposition reaction that generally occurs on the surface of carbon and alkali metal electrodes also takes place on nano-SnO2 anode, and the major constituent of the passivating layer is Li2CO3 and ROCO2Li. Formation of the passivating layer would certainly lead to the irreversible capacity loss.
文摘The synthesis of CDMO from LiOH and EMD has been investigated by thermogravimetry and pow- der X-ray diffraction analysis.The results showed that it took place from below 100 to 400℃.When the proportion of Li:Mn in the starting mixture was 3:7,the measured weight loss during this process was 7.40% for heat-treated EMD and 8.33% for non-heat-treated EMD.Based on these data and X-ray diffraction results the obtained product would be 3LiMn204 - MnO2.This material was es- sentially amorphous.It can insert 4.7 Li per 3LiMn_2O_4·MnO_2,leading to a capacity of 170- 200 mAh/g and demonstrated reasonable discharge and recharge cycle performance for both test cells and practical batteries.
基金supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017012, Human Resource Development Program for Industrial Innovation)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS2024-00411892)。
文摘Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.
文摘Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51222210,51472268,51421002,and 11234013)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010300)
文摘Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2](Li FSI) and Li[N(SO2CF3)2](Li TFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|Li FePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 m A/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.
文摘Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.
基金supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program of China(2021YFB2500300,2021YFB2400300)+8 种基金National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua University。
文摘High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.
文摘One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high specific capacity of about 650 mAh.g-1 at a current rate of 100 mA.g-1 after 40 cycles. They also exhibited high power capability at elevated current rates, i.e., 450 and 350 mAh.g 1 at current rates of 500 and 1000 mA.g 1, respectively. Formation of Mn3O4 and ZnO phases was identified by ex situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies after the initial discharge-charge cycle, which indicates that the ZnMn2O4 phase was converted to a nanocomposite of Mn3O4 and ZnO phases immediately after the electrochemical conversion reaction.
文摘Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy(EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry(CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA·h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5 - 4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.
文摘The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler抯 particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.