期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two Dimensional Nanoscale Reciprocating Sliding Contacts of Textured Surfaces 被引量:4
1
作者 TONG Ruiting LIU Geng LIU Tianxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期531-538,共8页
Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current... Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts. 展开更多
关键词 nanoscale reciprocating sliding contacts textured surface multiscale method
下载PDF
Nanoscale Reciprocating Sliding Contacts of Textured Surfaces:Influence of Structure Parameters and Indentation Depth
2
作者 Rui-Ting Tong Geng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期168-181,共14页
Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surface... Textured surfaces are widely used in engineering components as they can improve tribological properties of sliding contacts, while the detailed behaviors of nanoscale reciprocating sliding contacts of textured surfaces are still lack of study. By using multiscale method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. The influence of indentation depth, texture shape, texture spacing, and tip radius on the average friction forces and the running-in stages is studied. The results show that the lowest indentation depth can make all the four textured surfaces reach steady state. Surfaces with right-angled trapezoid textures on the right side are better for reducing the running-in stage, and surfaces with right-angled trapezoid textures on the left side are better to reduce wear. Compared with other textured surfaces, the total average friction forces can be reduced by 82.94%–91.49% for the case of the contact between the tip with radius R = 60rand the isosceles trapezoid textured surface. Besides,the total average friction forces increase with the tip radii due to that bigger tip will induce higher contact areas. This research proposes a detailed study on nanoscale reciprocating sliding contacts of textured surfaces, to contribute to design textured surfaces, reduce friction and wear. 展开更多
关键词 NANOSCALE reciprocating sliding contacts Textured surface Structure parameters Indentation depth
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部