In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the tem...In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 oC. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength(UTS) and compressive strength(CS) of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature.展开更多
The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified ...The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified conditions include a calcination temperature at 400 ℃, a roasting time of 0.5 h, and furnace cooling. The ammonia nitrogen removal rate from analog renewable water of the modified clinoptilolites reached 72% in the optimized conditions, which is 12% higher than that of natural ones. Scanning electron microscopy analysis showed that the surface morphology changed, the micro-hole size increased, and the surface became smoother and more uniform after calcination. The single-point total adsorption average pore width increased from 7.74 nm to 10.64 nm.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.51275295 and 51201102)the Shanghai Rising–Star Program(No.14QB1403200)Research Fund for the Doctoral Program of Higher Education of China(Nos.20120073120011 and 20130073110052)
文摘In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 oC. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength(UTS) and compressive strength(CS) of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature.
基金Funded by the National Natural Science Foundation of China(No.51174017)
文摘The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified conditions include a calcination temperature at 400 ℃, a roasting time of 0.5 h, and furnace cooling. The ammonia nitrogen removal rate from analog renewable water of the modified clinoptilolites reached 72% in the optimized conditions, which is 12% higher than that of natural ones. Scanning electron microscopy analysis showed that the surface morphology changed, the micro-hole size increased, and the surface became smoother and more uniform after calcination. The single-point total adsorption average pore width increased from 7.74 nm to 10.64 nm.