期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition 被引量:11
1
作者 Sun Jiping Li Chenxin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期357-361,共5页
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag... Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces. 展开更多
关键词 Coal mine Uniqueness detection recognition of personnel positioning cards Face recognition Generalized symmetry transformation
下载PDF
Review of rigid fruit and vegetable picking robots 被引量:1
2
作者 Yuxia Zhao Xuefeng Wan Huixiao Duo 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第5期1-11,共11页
The important indicators to measure the goodness of rigid fruit and vegetable picking robot have two aspects,the first is the reasonable structural design of the end-effector,and the second is having a high precision ... The important indicators to measure the goodness of rigid fruit and vegetable picking robot have two aspects,the first is the reasonable structural design of the end-effector,and the second is having a high precision positioning recognition method.Many researchers have done a lot of work in these two aspects,and a variety of end-effector structures and advanced position recognition methods are constantly appearing in people’s view.The working principle,structural characteristics,advantages and disadvantages of each end-effector are summarized to help us design better fruit and vegetable picking robot.The authors start from the rigid fruit and vegetable picking robot grasping methods,separation methods,and position recognition methods,firstly introduce three different grasping methods and the characteristics of the two separation methods,then introduce the under-driven picking robot developed on the basis of the traditional rigid picking robot,then explain the single special,multi-feature,and deep learning location position recognition methods currently used,and finally make a summary and outlook on the rigid fruit and vegetable picking robot from the structural development and position recognition methods. 展开更多
关键词 picking robot END-EFFECTOR grasping methods separation methods under-driven position recognition methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部