Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres...Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.展开更多
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat...This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.展开更多
We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two charact...We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two characters binary image: analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.展开更多
We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characte...We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.展开更多
The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of mach...The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.展开更多
The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the co...The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.展开更多
This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the ...This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the application of fuzzy neural network to the recognition of targets. The neural network is a multi-layered forward network and the learning algorithm is BP (error Back Propagation). In the paper, the adust formula of parameter of fuzzier is given. The paper provides a recognition result which is drawn from 1049 samples gathered from 41 vessels in 63 operating conditions, with an original recording time of about 3.5 hours. The identifications are more than 92% correct.展开更多
In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existenc...In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existence and global exponential stability of periodic solutions to the systems. Without assuming the global Lipschitz conditions of activation functions, our results are novel and reduce the limitation of previous known results. Moreover, an example is given to illustrate the effectiveness of our results.展开更多
This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image c...This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.展开更多
Background:Living cells need to undergo subtle shape adaptations in response to the topography of their substrates.These shape changes are mainly determined by reorganization of their internal cytoskeleton,with a majo...Background:Living cells need to undergo subtle shape adaptations in response to the topography of their substrates.These shape changes are mainly determined by reorganization of their internal cytoskeleton,with a major contribution from filamentous(F)actin.Bundles of F-actin play a major role in determining cell shape and their interaction with substrates,either as“stress fibers,”or as our newly discovered“Concave Actin Bundles”(CABs),which mainly occur while endothelial cells wrap micro-fibers in culture.Methods:To better understand the morphology and functions of these CABs,it is necessary to recognize and analyze as many of them as possible in complex cellular ensembles,which is a demanding and time-consuming task.In this study,we present a novel algorithm to automatically recognize CABs without further human intervention.We developed and employed a multilayer perceptron artificial neural network(“the recognizer”),which was trained to identify CABs.Results:The recognizer demonstrated high overall recognition rate and reliability in both randomized training,and in subsequent testing experiments.Conclusion:It would be an effective replacement for validation by visual detection which is both tedious and inherently prone to errors.展开更多
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i...Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-inpu...For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition.展开更多
文摘Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.
文摘This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.
文摘We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary, image of zip code box and message of the two characters binary image: analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.
文摘We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.
文摘The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency.
文摘The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.
文摘This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the application of fuzzy neural network to the recognition of targets. The neural network is a multi-layered forward network and the learning algorithm is BP (error Back Propagation). In the paper, the adust formula of parameter of fuzzier is given. The paper provides a recognition result which is drawn from 1049 samples gathered from 41 vessels in 63 operating conditions, with an original recording time of about 3.5 hours. The identifications are more than 92% correct.
基金the National Natural Science Foundation of China underGrant No.60574043the National Science Foundation of Hunan Provincial Education Departmentunder Grant No.06C792 and No.07C700the construct program of the key discipline in HunanProvince.
文摘In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existence and global exponential stability of periodic solutions to the systems. Without assuming the global Lipschitz conditions of activation functions, our results are novel and reduce the limitation of previous known results. Moreover, an example is given to illustrate the effectiveness of our results.
文摘This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.
文摘Background:Living cells need to undergo subtle shape adaptations in response to the topography of their substrates.These shape changes are mainly determined by reorganization of their internal cytoskeleton,with a major contribution from filamentous(F)actin.Bundles of F-actin play a major role in determining cell shape and their interaction with substrates,either as“stress fibers,”or as our newly discovered“Concave Actin Bundles”(CABs),which mainly occur while endothelial cells wrap micro-fibers in culture.Methods:To better understand the morphology and functions of these CABs,it is necessary to recognize and analyze as many of them as possible in complex cellular ensembles,which is a demanding and time-consuming task.In this study,we present a novel algorithm to automatically recognize CABs without further human intervention.We developed and employed a multilayer perceptron artificial neural network(“the recognizer”),which was trained to identify CABs.Results:The recognizer demonstrated high overall recognition rate and reliability in both randomized training,and in subsequent testing experiments.Conclusion:It would be an effective replacement for validation by visual detection which is both tedious and inherently prone to errors.
基金This research was partly supported by the National Science and Technology Council,Taiwan with Grant Numbers 112-2221-E-992-045,112-2221-E-992-057-MY3 and 112-2622-8-992-009-TD1.
文摘Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金Item Sponsored by National Natural Science Foundation of China and Shanghai Baosteel Group Co(50675186)Provincial Natural Science Foundation of Hebei Province of China(E2006001038)
文摘For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition.