Differently from the general online social network(OSN),locationbased mobile social network(LMSN),which seamlessly integrates mobile computing and social computing technologies,has unique characteristics of temporal,s...Differently from the general online social network(OSN),locationbased mobile social network(LMSN),which seamlessly integrates mobile computing and social computing technologies,has unique characteristics of temporal,spatial and social correlation.Recommending friends instantly based on current location of users in the real world has become increasingly popular in LMSN.However,the existing friend recommendation methods based on topological structures of a social network or non-topological information such as similar user profiles cannot well address the instant making friends in the real world.In this article,we analyze users' check-in behavior in a real LMSN site named Gowalla.According to this analysis,we present an approach of recommending friends instantly for LMSN users by considering the real-time physical location proximity,offline behavior similarity and friendship network information in the virtual community simultaneously.This approach effectively bridges the gap between the offline behavior of users in the real world and online friendship network information in the virtual community.Finally,we use the real user check-in dataset of Gowalla to verify the effectiveness of our approach.展开更多
Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations ha...Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.展开更多
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro...With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.展开更多
In this paper, we examine methods that can provide accurate results in a form of a recommender system within a social networking framework. The social networking site of choice is Twitter, due to its interesting socia...In this paper, we examine methods that can provide accurate results in a form of a recommender system within a social networking framework. The social networking site of choice is Twitter, due to its interesting social graph connections and content characteristics. We built a recommender system which recommends potential users to follow by analyzing their tweets using the CRM114 regex engine as a basis for content classification. The evaluation of the recommender system was based on a dataset generated from real Twitter users created in late 2009.展开更多
Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and c...Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
Background:The period following pregnancy is a critical time window when future habits with respect to physical activity(PA) and sedentary behavior(SB) are established;therefore,it warrants guidance.The purpose of thi...Background:The period following pregnancy is a critical time window when future habits with respect to physical activity(PA) and sedentary behavior(SB) are established;therefore,it warrants guidance.The purpose of this scoping review was to summarize public health-oriented country-specific postpartum PA and SB guidelines worldwide.Methods:To identity guidelines published since 2010,we performed a(a) systematic search of 4 databases(CINAHL,Global Health,PubMed,and SPORTDiscus),(b) structured repeatable web-based search separately for 194 countries,and(c) separate web-based search.Only the most recent guideline was included for each country.Results:We identified 22 countries with public health-oriented postpartum guidelines for PA and 11 countries with SB guidelines.The continents with guidelines included Europe(n=12),Asia(n=5),Oceania(n=2),Africa(n=1),North America(n=1),and South America(n=1).The most common benefits recorded for PA included weight control/management(n=10),reducing the risk of postpartum depression or depressive symptoms(n=9),and improving mood/well-being(n=8).Postpartum guidelines specified exercises to engage in,including pelvic floor exercises(n=17);muscle strengthening,weight training,or resistance exercises(n=13);aerobics/general aerobic activity(n=13);walking(n=11);cycling(n=9);and swimming(n=9).Eleven guidelines remarked on the interaction between PA and breastfeeding;several guidelines stated that PA did not impact breast milk quantity(n=7),breast milk quality(n=6),or infant growth(n=3).For SB,suggestions included limiting long-term sitting and interrupting sitting with PA.Conclusion:Country-specific postpartum guidelines for PA and SB can help promote healthy behaviors using a culturally appropriate context while providing specific guidance to public health practitioners.展开更多
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ...More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.展开更多
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recomm...Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-...This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.展开更多
A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer prefe...A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.展开更多
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as ...Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.展开更多
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen...The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.展开更多
In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating wom...In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating women(PLW)in SSA.It is estimated that the risk of HIV-acquisition during pregnancy and the postpartum period more than doubles.In this article,we discuss the safety and effectiveness of drugs used for oral HIV pre-exposure prophylaxis(PrEP),considerations for initiating PrEP in PLW,the barriers to initiating and adhering to PrEP among them and suggest recommendations to address these barriers.Tenofovir/emtricitabine,the most widely used combination in SSA,is safe,clinically effective,and cost-effective among PLW.Any PLW who requests PrEP and has no medical contraindications should receive it.PrEP users who are pregnant or lactating may experience barriers to starting and adhering for a variety of reasons,including personal,pill-related,and healthcare facility-related issues.To address the barriers,we recommend an increased provision of information on PrEP to the women and the communities,increasing and/or facilitating access to PrEP among the PLW,and developing strategies to increase adherence.展开更多
Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflec...Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
基金National Key Basic Research Program of China (973 Program) under Grant No.2012CB315802 and No.2013CB329102.National Natural Science Foundation of China under Grant No.61171102 and No.61132001.New generation broadband wireless mobile communication network Key Projects for Science and Technology Development under Grant No.2011ZX03002-002-01,Beijing Nova Program under Grant No.2008B50 and Beijing Higher Education Young Elite Teacher Project under Grant No.YETP0478
文摘Differently from the general online social network(OSN),locationbased mobile social network(LMSN),which seamlessly integrates mobile computing and social computing technologies,has unique characteristics of temporal,spatial and social correlation.Recommending friends instantly based on current location of users in the real world has become increasingly popular in LMSN.However,the existing friend recommendation methods based on topological structures of a social network or non-topological information such as similar user profiles cannot well address the instant making friends in the real world.In this article,we analyze users' check-in behavior in a real LMSN site named Gowalla.According to this analysis,we present an approach of recommending friends instantly for LMSN users by considering the real-time physical location proximity,offline behavior similarity and friendship network information in the virtual community simultaneously.This approach effectively bridges the gap between the offline behavior of users in the real world and online friendship network information in the virtual community.Finally,we use the real user check-in dataset of Gowalla to verify the effectiveness of our approach.
基金supported by the grants from Natural Science Foundation of China (Project No.61471060)
文摘Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.
基金supported by the National Key Research and Development Program(No.2016YFB0800302)
文摘With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.
文摘In this paper, we examine methods that can provide accurate results in a form of a recommender system within a social networking framework. The social networking site of choice is Twitter, due to its interesting social graph connections and content characteristics. We built a recommender system which recommends potential users to follow by analyzing their tweets using the CRM114 regex engine as a basis for content classification. The evaluation of the recommender system was based on a dataset generated from real Twitter users created in late 2009.
文摘Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金support by the National Institutes of Health (NIH),National Institute of Child Health and Human Development,award number T32 HD091058
文摘Background:The period following pregnancy is a critical time window when future habits with respect to physical activity(PA) and sedentary behavior(SB) are established;therefore,it warrants guidance.The purpose of this scoping review was to summarize public health-oriented country-specific postpartum PA and SB guidelines worldwide.Methods:To identity guidelines published since 2010,we performed a(a) systematic search of 4 databases(CINAHL,Global Health,PubMed,and SPORTDiscus),(b) structured repeatable web-based search separately for 194 countries,and(c) separate web-based search.Only the most recent guideline was included for each country.Results:We identified 22 countries with public health-oriented postpartum guidelines for PA and 11 countries with SB guidelines.The continents with guidelines included Europe(n=12),Asia(n=5),Oceania(n=2),Africa(n=1),North America(n=1),and South America(n=1).The most common benefits recorded for PA included weight control/management(n=10),reducing the risk of postpartum depression or depressive symptoms(n=9),and improving mood/well-being(n=8).Postpartum guidelines specified exercises to engage in,including pelvic floor exercises(n=17);muscle strengthening,weight training,or resistance exercises(n=13);aerobics/general aerobic activity(n=13);walking(n=11);cycling(n=9);and swimming(n=9).Eleven guidelines remarked on the interaction between PA and breastfeeding;several guidelines stated that PA did not impact breast milk quantity(n=7),breast milk quality(n=6),or infant growth(n=3).For SB,suggestions included limiting long-term sitting and interrupting sitting with PA.Conclusion:Country-specific postpartum guidelines for PA and SB can help promote healthy behaviors using a culturally appropriate context while providing specific guidance to public health practitioners.
基金supported by the National Natural Science Foundation of China(Grant No.62277032,62231017,62071254)Education Scientific Planning Project of Jiangsu Province(Grant No.B/2022/01/150)Jiangsu Provincial Qinglan Project,the Special Fund for Urban and Rural Construction and Development in Jiangsu Province.
文摘More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
基金This research was funded by Beijing Municipal Social Science Foundation(23YTB031)the Fundamental Research Funds for the Central Universities(CUC23ZDTJ005).
文摘Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number:IMSIU-RP23008).
文摘This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.
文摘A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.
基金supported by the Natural Science Foundation of Ningxia Province(No.2023AAC03316)the Ningxia Hui Autonomous Region Education Department Higher Edu-cation Key Scientific Research Project(No.NYG2022051)the North Minzu University Graduate Innovation Project(YCX23146).
文摘Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.
基金supported by the Industrial Support Project of Gansu Colleges under Grant No.2022CYZC-11Gansu Natural Science Foundation Project under Grant No.21JR7RA114+1 种基金National Natural Science Foundation of China under Grants No.622760736,No.1762078,and No.61363058Northwest Normal University Teachers Research Capacity Promotion Plan under Grant No.NWNU-LKQN2019-2.
文摘The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.
文摘In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating women(PLW)in SSA.It is estimated that the risk of HIV-acquisition during pregnancy and the postpartum period more than doubles.In this article,we discuss the safety and effectiveness of drugs used for oral HIV pre-exposure prophylaxis(PrEP),considerations for initiating PrEP in PLW,the barriers to initiating and adhering to PrEP among them and suggest recommendations to address these barriers.Tenofovir/emtricitabine,the most widely used combination in SSA,is safe,clinically effective,and cost-effective among PLW.Any PLW who requests PrEP and has no medical contraindications should receive it.PrEP users who are pregnant or lactating may experience barriers to starting and adhering for a variety of reasons,including personal,pill-related,and healthcare facility-related issues.To address the barriers,we recommend an increased provision of information on PrEP to the women and the communities,increasing and/or facilitating access to PrEP among the PLW,and developing strategies to increase adherence.
基金the National Natural Science Foundation of China(Grant Nos.62102347,62376041,62172352)Guangdong Ocean University Research Fund Project(Grant No.060302102304).
文摘Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.