Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo...Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.展开更多
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope...Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.展开更多
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app...Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.展开更多
Epilepsy is a chronic neurological disorder that affects the function of the brain in people of all ages.It manifests in the electroencephalogram(EEG) signal which records the electrical activity of the brain.Various ...Epilepsy is a chronic neurological disorder that affects the function of the brain in people of all ages.It manifests in the electroencephalogram(EEG) signal which records the electrical activity of the brain.Various image processing,signal processing,and machine-learning based techniques are employed to analyze epilepsy,using spatial and temporal features.The nervous system that generates the EEG signal is considered nonlinear and the EEG signals exhibit chaotic behavior.In order to capture these nonlinear dynamics,we use reconstructed phase space(RPS) representation of the signal.Earlier studies have primarily addressed seizure detection as a binary classification(normal vs.ictal) problem and rarely as a ternary class(normal vs.interictal vs.ictal)problem.We employ transfer learning on a pre-trained deep neural network model and retrain it using RPS images of the EEG signal.The classification accuracy of the model for the binary classes is(98.5±1.5)% and(95±2)% for the ternary classes.The performance of the convolution neural network(CNN) model is better than the other existing statistical approach for all performance indicators such as accuracy,sensitivity,and specificity.The result of the proposed approach shows the prospect of employing RPS images with CNN for predicting epileptic seizures.展开更多
Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when usin...Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when using X-ray CT for positioning and treatment planning systems(TPSs).Following the development of FLASH proton therapy,there are increased requirements for accurate and rapid positioning in TPSs.Thus,a new rapid proton CT imaging mode is proposed based on sparsely sampled projections.The proton beam was boosted to 350 MeV by a compact proton linear accelerator(LINAC).In this study,the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations.As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction,X-ray CT is used as a prior image.The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations.Considering the estimation of the most likely path(MLP),the prior image-constrained compressed sensing(PICCS)algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam.The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper.It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy(IGRT)in clinical proton therapy applications.展开更多
Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure p...Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.展开更多
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
A discussion is presented to gain the relationship between the original image and the reconstructed image while errors are mixed with the DCT data of the original image for the transmission. We can find the wrong reco...A discussion is presented to gain the relationship between the original image and the reconstructed image while errors are mixed with the DCT data of the original image for the transmission. We can find the wrong reconstructed blocks, locate blocks, which are most likely to contain errors and eliminate errors. The method needs no channel error protection, needs no verifiable bits, and needs no extra bandwidth. Experimental results are provided in the end.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include m...Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include muon radiography and muon tomography.A previously studied method known as coinciding muon trajectory density tomography,which utilizes muonic secondary particles,is proposed to image low and medium atomic number(Z)materials.However,scattering tomography is mostly used to image high-Z materials,and coinciding muon trajectory density tomography exhibits a hollow phenomenon in the imaging results owing to the self-absorption effect.To address the shortcomings of the individual imaging methods,hybrid model tomography combining scattering tomography and coinciding muon trajectory density tomography is proposed and verified.In addition,the peak signal-to-noise ratio was introduced to quantitatively analyze the image quality.Different imaging models were simulated using the Geant4 toolkit to confirm the advantages of this innovative method.The simulation results showed that hybrid model tomography can image centimeter-scale materials with low,medium,and high Z simultaneously.For high-Z materials with similar atomic numbers,this method can clearly distinguish those with apparent differences in density.According to the peak signal-to-noise ratio of the analysis,the reconstructed image quality of the new method was significantly higher than that of the individual imaging methods.This study provides a reliable approach to the compatibility of scattering tomography and coinciding muon trajectory density tomography.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measure...Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air].展开更多
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we...The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.展开更多
The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while...The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.展开更多
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金Subjects funded by the National Natural Science Foundation of China(Nos.62275216 and 61775181)the Natural Science Basic Research Programme of Shaanxi Province-Major Basic Research Special Project(Nos.S2018-ZC-TD-0061 and TZ0393)the Special Project for the Development of National Key Scientific Instruments and Equipment No.(51927804).
文摘Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
文摘Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.
基金National Natural Science Foundation of China,Grant/Award Number:62274142Hangzhou Major Technology Innovation Project of Artificial Intelligence,Grant/Award Number:2022AIZD0060。
文摘Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.
文摘Epilepsy is a chronic neurological disorder that affects the function of the brain in people of all ages.It manifests in the electroencephalogram(EEG) signal which records the electrical activity of the brain.Various image processing,signal processing,and machine-learning based techniques are employed to analyze epilepsy,using spatial and temporal features.The nervous system that generates the EEG signal is considered nonlinear and the EEG signals exhibit chaotic behavior.In order to capture these nonlinear dynamics,we use reconstructed phase space(RPS) representation of the signal.Earlier studies have primarily addressed seizure detection as a binary classification(normal vs.ictal) problem and rarely as a ternary class(normal vs.interictal vs.ictal)problem.We employ transfer learning on a pre-trained deep neural network model and retrain it using RPS images of the EEG signal.The classification accuracy of the model for the binary classes is(98.5±1.5)% and(95±2)% for the ternary classes.The performance of the convolution neural network(CNN) model is better than the other existing statistical approach for all performance indicators such as accuracy,sensitivity,and specificity.The result of the proposed approach shows the prospect of employing RPS images with CNN for predicting epileptic seizures.
基金supported by the Research collaboration on Thailand’s new synchrotron light source facility(SPS-II)(No.ANSO-CR-KP-2020-16).
文摘Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when using X-ray CT for positioning and treatment planning systems(TPSs).Following the development of FLASH proton therapy,there are increased requirements for accurate and rapid positioning in TPSs.Thus,a new rapid proton CT imaging mode is proposed based on sparsely sampled projections.The proton beam was boosted to 350 MeV by a compact proton linear accelerator(LINAC).In this study,the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations.As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction,X-ray CT is used as a prior image.The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations.Considering the estimation of the most likely path(MLP),the prior image-constrained compressed sensing(PICCS)algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam.The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper.It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy(IGRT)in clinical proton therapy applications.
基金This work is supported by the National Key Research and Development Program of China(2020YFC2003400)Qiang Ni’s work was funded by the UK EPSRC project under grant number EP/K011693/1.
文摘Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
文摘A discussion is presented to gain the relationship between the original image and the reconstructed image while errors are mixed with the DCT data of the original image for the transmission. We can find the wrong reconstructed blocks, locate blocks, which are most likely to contain errors and eliminate errors. The method needs no channel error protection, needs no verifiable bits, and needs no extra bandwidth. Experimental results are provided in the end.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金supported by the National Natural Science Foundation of China(No.11875163)Natural Science Foundation of Hunan Province(Nos.2021JJ20006 and 2021JJ40444)+1 种基金Ministry of Science and Technology of China(No.2020YFE0202001)Department of Education of Hunan Province(Nos.19B488 and 21A0281)。
文摘Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include muon radiography and muon tomography.A previously studied method known as coinciding muon trajectory density tomography,which utilizes muonic secondary particles,is proposed to image low and medium atomic number(Z)materials.However,scattering tomography is mostly used to image high-Z materials,and coinciding muon trajectory density tomography exhibits a hollow phenomenon in the imaging results owing to the self-absorption effect.To address the shortcomings of the individual imaging methods,hybrid model tomography combining scattering tomography and coinciding muon trajectory density tomography is proposed and verified.In addition,the peak signal-to-noise ratio was introduced to quantitatively analyze the image quality.Different imaging models were simulated using the Geant4 toolkit to confirm the advantages of this innovative method.The simulation results showed that hybrid model tomography can image centimeter-scale materials with low,medium,and high Z simultaneously.For high-Z materials with similar atomic numbers,this method can clearly distinguish those with apparent differences in density.According to the peak signal-to-noise ratio of the analysis,the reconstructed image quality of the new method was significantly higher than that of the individual imaging methods.This study provides a reliable approach to the compatibility of scattering tomography and coinciding muon trajectory density tomography.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金Supported by the National Natural Science Foundation of China (50777049,51177120)the National High Technology Research and Development Program of China (2009AA04Z130)the RCUK’s Energy Programme (EP/F061307/1)
文摘Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air].
基金supported by the National Natural Science Foundation of China(Grant Nos.41904148,41731070,41874175)in part by the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15017000,XDA15350201,XDA15052500).
文摘The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.
文摘The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.