The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffract...The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the res...An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a genera...In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Groechenig and Chen's results, respectively. So we obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to accommodate a large number of possible models. They are maybe useful for signal processing and communication theory.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, h...Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, high precision OCT algorithms with few views ought to be studied for EST application. To improve the reconstruction precision in the case of few views, a new computed tomography reconstruction algorithm based on multipurpose optimal criterion and simulated annealing theory (multi-criterion simulated annealing reconstruction technique, MCSART) is proposed. This algorithm can suffice criterion of least squares, criterion of most uniformity, and criterion of most smoothness synchronously. We can get global optimal solution by MCSART algorithm with simulated annealing theory. The simulating experiment result shows that this algorithm is superior to the traditional algorithms under various noises.展开更多
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high...Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.展开更多
In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed ...In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.展开更多
Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method...Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method combined a mechanism of vision lateral inhibition with an algorithm projection onto convex sets (POCS) reconstruction, the improved vision lateral inhibition network was utilized to enhance the contrast between object and background of low-resolution image sequences, then POCS algorithm was adopted to reconstruct super- resolution image. Experimental results showed that the proposed method can significantly improve the visual effect of image, whose contrast and information entropy of reconstructed infrared images were improved by approxi- mately 5 times and 1.6 times compared with traditional POCS reconstruction algorithm, respectively.展开更多
The finite-difference time-domain (FDTD) method is extensively applied in dealing with time-domain microwave imaging(MWI) problems since it is robust, fast, simple to implement. However, the FDTD method is an expl...The finite-difference time-domain (FDTD) method is extensively applied in dealing with time-domain microwave imaging(MWI) problems since it is robust, fast, simple to implement. However, the FDTD method is an explicit time-stepping technique, due to the constraint of the Courant-Friedrich-Levy (CFL) stability condition, the time step needs to be as small as the size of the fine cells, which brings a major increase in computational costs. A fast nonlinear electromagnetic reconstruction algorithm for layered loss-y media by using the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method is proposed. This algorithm is based on an adjoint method, and the nonlinear iterations apply the ADI-FDTD method to calculate the forward and adjoint field, and adopt the Polak, Ribiere, Polyar conjugate-gradient (PRP-CG) optimization scheme. By comparing the simulation results based on ADI-FDTD method and the FDTD method, the validity and efficiency of the proposed algorithm have been proved. Furthermore, the relative residual errors (RRE) are introduced as the iterative computation termination conditions, which further prove the accuracy of this algorithm.展开更多
In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem...In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.展开更多
The soft X-ray polarimeter(SXP)is a detector with a wide energy range,large area,and large field of view.A SXP will be mounted on the Chinese Space Station and will mainly focus on detecting the polarization of transi...The soft X-ray polarimeter(SXP)is a detector with a wide energy range,large area,and large field of view.A SXP will be mounted on the Chinese Space Station and will mainly focus on detecting the polarization of transient soft X-ray(2–10 keV)sources,especially gamma-ray bursts(GRBs).In this work,a polarimeter detector unit is taken as an example,and Geant4 and Garfield++software are used to simulate the detection efficiency and track production.An improved track reconstruction algorithm is proposed and used to reconstruct two-dimensional images of the tracks.In this method,the initial emission angle of photoelectrons is reconstructed from the initial part of the track by shortening or extending the initial part of the track until the remaining track is straight,and the number of pixels is within an adjustable threshold.The modulation factor of the photoelectronic tracks after reconstruction reaches approximately 57%in the photon energy range of 7–10 keV.展开更多
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen...Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.展开更多
In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection da...In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection data for OFS objects, some scan modes have been developed for long objects and short but over-wide objects. However, these modes still cannot meet the requirements for both longitudinally long and transversely wide objects. In this paper, we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects. The simulation results show that our model can deal with the problem and that the results are acceptable, while the OFS object is twice as long compared with the FOV in the same latitude.展开更多
Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness...Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem.The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm.In this paper,we present a reconstruction method based on L_(1/2) regularization to enhance sparsity of BLT solution and solve the nonconvex L_(1/2) norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights.To assess the performance of the proposed reconstruction algorithm,simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms,including the weighted interior-point,L1 homotopy,and the Stagewise Orthogonal Matching Pursuit algorithm.Simulation results show that the proposed method yield stable reconstruction results under different noise levels.Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy,multiple-source resolving and image quality.展开更多
In this paper,the observation matrix and reconstruction algorithm of compressed sensing sampling theorem are studied.The advantages and disadvantages of greedy reconstruction algorithm are analyzed.The disadvantages o...In this paper,the observation matrix and reconstruction algorithm of compressed sensing sampling theorem are studied.The advantages and disadvantages of greedy reconstruction algorithm are analyzed.The disadvantages of signal sparsely are preset in this algorithm.The sparsely adaptive estimation algorithm is proposed.The compressed sampling matching tracking algorithm supports the set selection and culling atomic standards to improve.The sparse step size adaptive compressed sampling matching tracking algorithm is proposed.The improved algorithm selects the sparsely as the step size to select the support set atom,and the maximum correlation value.Half of the threshold culling algorithm supports the concentration of excess atoms.The experimental results show that the improved algorithm has better power and lower image reconstruction error under the same sparsely criterion,and has higher image reconstruction quality and visual effects.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12027812)the Guangdong Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2021A1515111031)。
文摘The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
基金Supported by National Natural Science Foundation of China (No.60532020,60301008,60472077,50337020), the High Tech-nique Research and Development Program of China (No.2001AA413210).
文摘An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
文摘In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Groechenig and Chen's results, respectively. So we obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to accommodate a large number of possible models. They are maybe useful for signal processing and communication theory.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金This work was supported by the Chinese Natural Science Foundation of China(No.60577016)the Foundation(No. 0512034)of Jiangxi Natural Science+1 种基金the Science and Technology Program(No. 2006-164)of Jiangxi Provincial Department of Educationthe Program(No.2005-314)of Key Laboratory of Nondestructive Testing Technology,Ministry of Education.
文摘Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, high precision OCT algorithms with few views ought to be studied for EST application. To improve the reconstruction precision in the case of few views, a new computed tomography reconstruction algorithm based on multipurpose optimal criterion and simulated annealing theory (multi-criterion simulated annealing reconstruction technique, MCSART) is proposed. This algorithm can suffice criterion of least squares, criterion of most uniformity, and criterion of most smoothness synchronously. We can get global optimal solution by MCSART algorithm with simulated annealing theory. The simulating experiment result shows that this algorithm is superior to the traditional algorithms under various noises.
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program ofHigher Education of China(New Teachers)(Grant No.20116101120018)+4 种基金the China Postdoctoral Sci-ence_Foundation_Funded Project(Grant_Nos.2011M501467 and 2012T50814)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fund amental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Scienceand Technology Plan Program in Xi'an of China(Grant No.CXY 1348(2)).
文摘Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.
基金Supported by the National Natural Science Foundation of China(61271398)the Natural Science Foundation of Ningbo(2012A610031)
文摘In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.
文摘Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method combined a mechanism of vision lateral inhibition with an algorithm projection onto convex sets (POCS) reconstruction, the improved vision lateral inhibition network was utilized to enhance the contrast between object and background of low-resolution image sequences, then POCS algorithm was adopted to reconstruct super- resolution image. Experimental results showed that the proposed method can significantly improve the visual effect of image, whose contrast and information entropy of reconstructed infrared images were improved by approxi- mately 5 times and 1.6 times compared with traditional POCS reconstruction algorithm, respectively.
文摘The finite-difference time-domain (FDTD) method is extensively applied in dealing with time-domain microwave imaging(MWI) problems since it is robust, fast, simple to implement. However, the FDTD method is an explicit time-stepping technique, due to the constraint of the Courant-Friedrich-Levy (CFL) stability condition, the time step needs to be as small as the size of the fine cells, which brings a major increase in computational costs. A fast nonlinear electromagnetic reconstruction algorithm for layered loss-y media by using the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method is proposed. This algorithm is based on an adjoint method, and the nonlinear iterations apply the ADI-FDTD method to calculate the forward and adjoint field, and adopt the Polak, Ribiere, Polyar conjugate-gradient (PRP-CG) optimization scheme. By comparing the simulation results based on ADI-FDTD method and the FDTD method, the validity and efficiency of the proposed algorithm have been proved. Furthermore, the relative residual errors (RRE) are introduced as the iterative computation termination conditions, which further prove the accuracy of this algorithm.
文摘In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1731239,12027803,11851304,U1938201,11575193,and U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2017AD22006,2018JJA110048)Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSW368 SLH039)。
文摘The soft X-ray polarimeter(SXP)is a detector with a wide energy range,large area,and large field of view.A SXP will be mounted on the Chinese Space Station and will mainly focus on detecting the polarization of transient soft X-ray(2–10 keV)sources,especially gamma-ray bursts(GRBs).In this work,a polarimeter detector unit is taken as an example,and Geant4 and Garfield++software are used to simulate the detection efficiency and track production.An improved track reconstruction algorithm is proposed and used to reconstruct two-dimensional images of the tracks.In this method,the initial emission angle of photoelectrons is reconstructed from the initial part of the track by shortening or extending the initial part of the track until the remaining track is straight,and the number of pixels is within an adjustable threshold.The modulation factor of the photoelectronic tracks after reconstruction reaches approximately 57%in the photon energy range of 7–10 keV.
基金Supported by the National Natural Science Foundation of China (No. 61073079)the Fundamental Research Funds for the Central Universities (2011JBM216,2011YJS021)
文摘Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707701)the National High Technology Research and Development Program of China (Grant No. 2009AA012200)the National Nature Science Foundation of China(Grant No. 30970722)
文摘In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection data for OFS objects, some scan modes have been developed for long objects and short but over-wide objects. However, these modes still cannot meet the requirements for both longitudinally long and transversely wide objects. In this paper, we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects. The simulation results show that our model can deal with the problem and that the results are acceptable, while the OFS object is twice as long compared with the FOV in the same latitude.
基金supported by the National Natural Science Foundation of China(No.61401264,11574192)the Natural Science Research Plan Program in Shaanxi Province of China(No.2015JM6322)the Fundamental Research Funds for the Central Universities(No.GK201603025).
文摘Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem.The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm.In this paper,we present a reconstruction method based on L_(1/2) regularization to enhance sparsity of BLT solution and solve the nonconvex L_(1/2) norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights.To assess the performance of the proposed reconstruction algorithm,simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms,including the weighted interior-point,L1 homotopy,and the Stagewise Orthogonal Matching Pursuit algorithm.Simulation results show that the proposed method yield stable reconstruction results under different noise levels.Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy,multiple-source resolving and image quality.
基金This study was supported by the Yangtze University Innovation and Entrepreneurship Course Construction Project of“Mobile Internet Entrepreneurship”.
文摘In this paper,the observation matrix and reconstruction algorithm of compressed sensing sampling theorem are studied.The advantages and disadvantages of greedy reconstruction algorithm are analyzed.The disadvantages of signal sparsely are preset in this algorithm.The sparsely adaptive estimation algorithm is proposed.The compressed sampling matching tracking algorithm supports the set selection and culling atomic standards to improve.The sparse step size adaptive compressed sampling matching tracking algorithm is proposed.The improved algorithm selects the sparsely as the step size to select the support set atom,and the maximum correlation value.Half of the threshold culling algorithm supports the concentration of excess atoms.The experimental results show that the improved algorithm has better power and lower image reconstruction error under the same sparsely criterion,and has higher image reconstruction quality and visual effects.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.