Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously...Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method.展开更多
Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time windo...Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.展开更多
It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change. Based on dryness and wetness grades series of 18 stations in Northern China of...It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change. Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of ell mate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper. The results showed that there were good relationship between the reconstructed precipitation series and the observation precipiration series sincc 1954 and their relative root mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood. Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from mid- dle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situa- tion in Northern China.展开更多
In this study the Qing weather records 'Clear and Rain Records' were used to reconstruct the 18th century summer (June-August) precipitation and monthly precipitation series of May, June, July, and August. The...In this study the Qing weather records 'Clear and Rain Records' were used to reconstruct the 18th century summer (June-August) precipitation and monthly precipitation series of May, June, July, and August. The nature of these records and the techniquc of transforming them into numerical codes are described. The procedure of converting these descriptive records into quantitative monthly precipitation and its scientific basis are given in detail. The reliability of the obtaind precipitation series is also ex- amined.展开更多
Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products w...Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products with time series reconstruction(TSR)algorithms.Applying currently available implementations of TSR to large-volume datasets is time-consuming and challenging for non-professional users with limited computation or storage resources.This study introduces a new open-source software package entitled‘HANTS-GEE’that implements a well-known and robust TSR algorithm,i.e.Harmonic ANalysis of Time Series(HANTS),on the Google Earth Engine(GEE)platform for scalable reconstruction of terrestrial earth observation data.Reconstruction tasks can be conducted on user-defined spatiotemporal extents when raw datasets are available on GEE.According to site-based and regional-based case evaluation,the new tool can effectively eliminate cloud contamination in the time series of earth observation data.Compared with traditional PC-based HANTS implementation,the HANTS-GEE provides quite consistent reconstruction results for most terrestrial vegetated sites.The HANTS-GEE can provide scalable reconstruction services with accelerated processing speed and reduced internet data transmission volume,promoting algorithm usage by much broader user communities.To our knowledge,the software package is thefirst tool to support full-stack TSR processing for popular open-access satellite sensors on cloud platforms.展开更多
Evaporation plays an important role in water balance on the land surface. In Northern China, the evaporation series of the recent 115 years was reconstructed on the basis of Yhornthwaite evaporation formula. The chara...Evaporation plays an important role in water balance on the land surface. In Northern China, the evaporation series of the recent 115 years was reconstructed on the basis of Yhornthwaite evaporation formula. The characteristics of the reconstructed series were analyzed using 10-year running mean filter, power spectrum method, and running t-text of abrupt changes on the paper. The results showed that there were remarkable interannual fluctuations with timescales of about quasi-8-year, 3-4-year, and quasi-2-year, and interdecadal oscillations with timescales of 57.5-year, quasi-23-year, and l l.5-year. Meanwhile, the abrupt changes of the evaporation series were also of interdecadal timescale. Either interannual fluctuations or interdecadal oscillations of evaporation were closely related to variations in air temperatures and precipitation.展开更多
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SG...Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.展开更多
文摘Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFC1508001)the National Natural Science Foundation of China(Grant No.51709073)the Fundamental Research Funds for the Central Universities of China(Grant No.B220202031).
文摘Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.
文摘It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change. Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of ell mate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper. The results showed that there were good relationship between the reconstructed precipitation series and the observation precipiration series sincc 1954 and their relative root mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood. Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from mid- dle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situa- tion in Northern China.
基金supported by the U.S.National Science Foundation Climate Dynamics Section Grant ATM-8511905.
文摘In this study the Qing weather records 'Clear and Rain Records' were used to reconstruct the 18th century summer (June-August) precipitation and monthly precipitation series of May, June, July, and August. The nature of these records and the techniquc of transforming them into numerical codes are described. The procedure of converting these descriptive records into quantitative monthly precipitation and its scientific basis are given in detail. The reliability of the obtaind precipitation series is also ex- amined.
基金supported by the National Natural Science Foundation of China(grant number 42171371 and No.41701492)Massimo Menenti acknowledges the support of the MOST High Level Foreign Expert program(grant number G2022055010L)the Chinese Academy of Sciences President s International Fellowship Initiative(grant number 2020VTA0001).
文摘Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products with time series reconstruction(TSR)algorithms.Applying currently available implementations of TSR to large-volume datasets is time-consuming and challenging for non-professional users with limited computation or storage resources.This study introduces a new open-source software package entitled‘HANTS-GEE’that implements a well-known and robust TSR algorithm,i.e.Harmonic ANalysis of Time Series(HANTS),on the Google Earth Engine(GEE)platform for scalable reconstruction of terrestrial earth observation data.Reconstruction tasks can be conducted on user-defined spatiotemporal extents when raw datasets are available on GEE.According to site-based and regional-based case evaluation,the new tool can effectively eliminate cloud contamination in the time series of earth observation data.Compared with traditional PC-based HANTS implementation,the HANTS-GEE provides quite consistent reconstruction results for most terrestrial vegetated sites.The HANTS-GEE can provide scalable reconstruction services with accelerated processing speed and reduced internet data transmission volume,promoting algorithm usage by much broader user communities.To our knowledge,the software package is thefirst tool to support full-stack TSR processing for popular open-access satellite sensors on cloud platforms.
基金Project supported by the Ministry of Science and Technology in China (Grant No: 2002DIB20067)
文摘Evaporation plays an important role in water balance on the land surface. In Northern China, the evaporation series of the recent 115 years was reconstructed on the basis of Yhornthwaite evaporation formula. The characteristics of the reconstructed series were analyzed using 10-year running mean filter, power spectrum method, and running t-text of abrupt changes on the paper. The results showed that there were remarkable interannual fluctuations with timescales of about quasi-8-year, 3-4-year, and quasi-2-year, and interdecadal oscillations with timescales of 57.5-year, quasi-23-year, and l l.5-year. Meanwhile, the abrupt changes of the evaporation series were also of interdecadal timescale. Either interannual fluctuations or interdecadal oscillations of evaporation were closely related to variations in air temperatures and precipitation.
基金National Natural Science Foundation of China,No.40971118Physical Geography Key Disciplines Construction Subjects of Hebei Province
文摘Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.