A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway...A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.展开更多
Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital wer...Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the展开更多
Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is ...Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-singular value decomposition (K-SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6-bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms.展开更多
We used three methods to reconstruct a same bony and membranous labyrinth by an image processing work station(IPWS). Three dimensional (3-D)models of the bony and membranous labyrinth were thus obtained.Different part...We used three methods to reconstruct a same bony and membranous labyrinth by an image processing work station(IPWS). Three dimensional (3-D)models of the bony and membranous labyrinth were thus obtained.Different parts of the labyrinth were measured and the spatial relationship展开更多
To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capabl...To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.展开更多
An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the...An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.展开更多
基金This project is supported by National Natural Science Foundation ofChina (No.50375047).
文摘A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.
文摘Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the
基金This work was supported by the Natural Science Foundation of China (NSFC)-Guangdong Joint Foundation Key Project (No. U1401253), the NSFC (Nos. 61573153, 616721 74), the Foundation of Guangdong Provincial Science and Technology Projects (No. 2013B010401001 ), the Fundamental Research Funds for the Central Universities (No. 2015ZZ099), the Guangzhou Science and Technology Plan Project (No. 201510010132), the Maoming Science and Technology Plan Project (No. MM201 7000004), and the National Natural Science Foundation of Guangdong Province (No. 2016A030313510).
文摘Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-singular value decomposition (K-SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6-bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms.
文摘We used three methods to reconstruct a same bony and membranous labyrinth by an image processing work station(IPWS). Three dimensional (3-D)models of the bony and membranous labyrinth were thus obtained.Different parts of the labyrinth were measured and the spatial relationship
基金supported by the National Natural Science Foundation of China(51305452)
文摘To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.
文摘An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.