In the prosthetic socket design, aimed at the high cost and radiation deficiency caused by CT scanning which is a routine technique to obtain the cross-sectional image of the residual limb, a new ultrasonic scanning m...In the prosthetic socket design, aimed at the high cost and radiation deficiency caused by CT scanning which is a routine technique to obtain the cross-sectional image of the residual limb, a new ultrasonic scanning method is developed to acquire the bones and skin contours of the residual limb. Using a pig fore-leg as the scanning object, an overlapping algorithm is designed to reconstruct the 2D cross-sectional image, the contours of the bone and skin are extracted using edge detection algorithm and the 3D model of the pig fore-leg is reconstructed by using reverse engineering technology. The results of checking the accuracy of the image by scanning a cylinder work pieces show that the extracted contours of the cylinder are quite close to the standard circumference. So it is feasible to get the contours of bones and skin by ultrasonic scanning. The ultrasonic scanning system featuring no radiation and low cost is a kind of new means of cross section scanning for medical images.展开更多
Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vec...Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2002AA421130)Excellent Doctoral Dissertation Fund(No.200026).
文摘In the prosthetic socket design, aimed at the high cost and radiation deficiency caused by CT scanning which is a routine technique to obtain the cross-sectional image of the residual limb, a new ultrasonic scanning method is developed to acquire the bones and skin contours of the residual limb. Using a pig fore-leg as the scanning object, an overlapping algorithm is designed to reconstruct the 2D cross-sectional image, the contours of the bone and skin are extracted using edge detection algorithm and the 3D model of the pig fore-leg is reconstructed by using reverse engineering technology. The results of checking the accuracy of the image by scanning a cylinder work pieces show that the extracted contours of the cylinder are quite close to the standard circumference. So it is feasible to get the contours of bones and skin by ultrasonic scanning. The ultrasonic scanning system featuring no radiation and low cost is a kind of new means of cross section scanning for medical images.
基金supported in part by Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)State Key Program of National Natural Science Foundation of China under Grant(No.U1866210)Natural Science Foundation of Guangdong Province(No.2022A1515011587).
文摘Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.