期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
A method for extracting the preseismic gravity anomalies over the Tibetan Plateau based on the maximum shear strain using GRACE data
1
作者 Hui Wang DongMei Song +1 位作者 XinJian Shan Bin Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期589-608,共20页
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da... The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research. 展开更多
关键词 Gravity recovery And Climate Experiment(GRACE)data maximum shear strain offset index K preseismic gravity anomalies Tibetan Plateau fault zone
下载PDF
Spatial and temporal patterns of the inter-annual oscillations of glacier mass over Central Asia inferred from Gravity Recovery and Climate Experiment(GRACE) data 被引量:2
2
作者 ZHU Chuandong LU Yang +1 位作者 SHI Hongling ZHANG Zizhan 《Journal of Arid Land》 SCIE CSCD 2017年第1期87-97,共11页
Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of... Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of glacier mass over Central Asia from the first ten principal components(S-PCs) of filtered variability via multichannel singular spectral analysis(MSSA), based on gridded data of glacier mass inferred from Gravity Recovery and Climate Experiment(GRACE) data obtained from July 2002 to March 2015. Two significant cycles of glacier mass balance oscillations were identified. The first cycle with a period of 6.1-year accounted for 54.5% of the total variance and the second with a period of 2.3-year accounted for 4.3%. The 6.1-year oscillation exhibited a stronger variability compared with the 2.3-year oscillation. For the 6.1-year oscillation, the results from lagged cross-correlation function suggested that there were significant correlations between glacier mass balances and precipitation variations with the precipitation variations leading the response of glacier mass balances by 9–16 months. 展开更多
关键词 Gravity recovery and Climate Experiment glacier mass balance multichannel singular spectral analysis Central Asia
下载PDF
Progress in satellite gravity recovery from implemented CHAMP,GRACE and GOCE and future GRACE Follow-On missions 被引量:8
3
作者 Zheng Wei Xu Houze 《Geodesy and Geodynamics》 2015年第4期241-247,共7页
Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid heigh... Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid height influenced by three instrument errors from the current Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is established based on the semi-analytical method, and the Earth's gravitational field from the executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors are 1.727 × 10^-1 m, 1.839 × 10^-1 m and 9.025 × 10^ -2 m at degrees 70,120 and 250 from the implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE, which preferably accord with those from the existing earth gravity field models involving EIGEN-CHAMP03S, EICEN-GRACE02S and GO_CONS GCF 2 DIR R1. The cumulative geoid height error is 6.847 × 10 ^-2 m at degree 250 from the future GRACE Follow-On mission. Finally, the complementarity among the four-stage satellite gravity missions including CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively. 展开更多
关键词 CHAMP (Challenging Minisatellite Payload)GRACE (Gravity recovery and Climate Experiment)GOCE (Gravity Field and Steady-State Ocean Circulation Explorer)GRACE Follow-OnEnergy conservation principle Semi-analytical method Space-time-wise approach
下载PDF
Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach 被引量:1
4
作者 Wang Changqing Xu Houze +1 位作者 Zhong Min Feng Wei 《Geodesy and Geodynamics》 2015年第4期253-260,共8页
The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on varia... The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL. 展开更多
关键词 Gravity recovery and climate experiment (GRACE) Temporal gravity field Variational equations approach Water storage changes Equivalent water height(EWH)Data weight ratio Geoid height per degree IGG temporal gravity model
下载PDF
GRACE time-variable gravity and its application to geoscience:Quantitative analysis of relevant literature 被引量:2
5
作者 Cao Liu WenKe Sun 《Earth and Planetary Physics》 EI CSCD 2023年第2期295-309,共15页
The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science a... The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines. 展开更多
关键词 Gravity recovery and Climate Experiment(GRACE) Gravity recovery and Climate Experiment Follow-On(GRACE-FO) time-varying gravity BIBLIOMETRY mass change CiteSpace VOSviewer
下载PDF
Vertical crustal deformation velocity and its influencing factors over the Qinghai-Tibet Plateau based on satellite gravity data 被引量:4
6
作者 HuRong Duan JunGang Guo +2 位作者 LingKang Chen JiaShuang Jiao HeTing Jian 《Earth and Planetary Physics》 EI CSCD 2022年第4期366-377,共12页
The uplift of the Qinghai-Tibet Plateau(TP)strongly influences climate change,both regionally and globally.Surface observation data from this region have limited coverage and are difficult to obtain.Consequently,the v... The uplift of the Qinghai-Tibet Plateau(TP)strongly influences climate change,both regionally and globally.Surface observation data from this region have limited coverage and are difficult to obtain.Consequently,the vertical crustal deformation velocity(VCDV)distribution of the TP is poorly constrained.In this study,the VCDV from the TP was inverted by using data from the gravity recovery and climate experiment(GRACE).We were able to obtain the vertical crustal movement by deducting the hydrological factors,based on the assumption that the gravity signal detected by GRACE is mainly composed of hydrological factors and vertical crustal movement.From the vertical crustal movement,we inverted the distribution of the VCDV across the TP.The results showed that the VCDV of the southern,eastern,and northern TP is~1.1 mm/a,~0.5 mm/a,and−0.1 mm/a,respectively,whereas that of the region between the Qilian Haiyuan Fault and the Kunlun Fault is~0.0 mm/a.These results are consistent with the distribution of crustal deformation,thrust earthquakes and faults,and regional lithospheric activity.The hydrology,crustal thickness,and topographic factors did not change the overall distribution of the VCDV across the TP.The influence of hydrological factors is marked,with the maximum differences being approximately−0.4 mm/a in the northwest and 1.0 mm/a in the central area.The results of this study are significant for understanding the kinematics of the TP. 展开更多
关键词 GRACE(gravity recovery and climate experiment) Qinghai-Tibet Plateau crustal vertical deformation hydrological factors crustal thickness
下载PDF
Research on the intermediate phase of 40CrMnSiB steel shell under different heat treatments 被引量:1
7
作者 Wei-bing Li Zhi-chuang Chen +1 位作者 Xiao-ming Wang Wen-bin Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1032-1041,共10页
In this study, 40 Cr Mn Si B steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A midexplosi... In this study, 40 Cr Mn Si B steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A midexplosion recovery experiment for the metal cylinder under internal explosive loading was designed, and the wreckage of the casings at the intermediate phase was obtained. The effects of different tempering temperatures on the macroscopic and microscopic fracture characteristics of 40 Cr Mn Si B steel were studied. The influence of tempering temperatures on the fracture characteristic parameters of the recovered wreckage were measured and analyzed, including the circumferential divide size, the thickness and the number of the circumferential divisions. The results show that as the tempering temperature was increased from 350 to 600 ℃, at first, the degree of fragmentation and the fracture characteristic parameters of the recovered wreckage changed significantly and then became essentially consistent. Scanning electron microscopy analysis revealed flow-like structure characteristics caused by adiabatic shear on different fracture surfaces. At the detonation initiation end of the casing, fracturing was formed by tearing along the crack, which existed a distance from the initiation end and propagated along the axis direction. In contrast, the fracturing near the middle position consists of a plurality of radial shear fracture units. The amount of alloy carbide that was precipitated during the tempering process increased continuously with tempering temperature, leading to an increasing number of spherical carbide particles scattered around the fracture surface. 展开更多
关键词 Explosive mechanics Mid-explosion recovery experiment Explosion and fracture Heat treatment SEM(Scanning electron microscope)fracture analysis
下载PDF
GRACE-based estimates of groundwater variations over North America from 2002 to 2017 被引量:1
8
作者 Hansheng Wang Longwei Xiang +5 位作者 Holger Steffen Patrick Wu Liming Jiang Qiang Shen Zhen Li Masaki Hayashi 《Geodesy and Geodynamics》 CSCD 2022年第1期11-23,共13页
GRACE-based estimates for groundwater storage(GWS)changes in North America substantially depend upon correction of glacialisostatic adjustment(GIA)effects,which are usually removed with GIA models.In this study,GIA ef... GRACE-based estimates for groundwater storage(GWS)changes in North America substantially depend upon correction of glacialisostatic adjustment(GIA)effects,which are usually removed with GIA models.In this study,GIA effects are eliminated by employing an independent separation approach with the aid of Global Navigation Satellite System(GNSS)vertical velocity data.Our goal is to provide an independent estimate for monthly GWS changes within North America in 1-degree-grids and their trends over the whole GRACE mission lifetime from April 2002 to June 2017.This estimate is derived from the release-6 version of GRACE monthly level-2 data,GNSS data,land surface models for soil moisture and snow wa-ter equivalent,and satellite altimetric lake leveldata.We find a GWS anomaly in form of an increasing trend in Saskatchewan,which affects the Saskatchewan Province and the states of Montana,North Dakota and Minnesota,and 4 GWS anomalies with declining trends in Nevada,California,Arizona and Texas,respec-tively.The monthly changes of these GWS anomalies,except for the one in Nevada,are validated by well level data.We provide results for average monthly GWS changes and the trends for the 5 anomalies but also in separate form for the 13 affected states or provinces.The increasing trends of the Saskatchewan GWS anomaly and the affected 3 states are related to increasing precipitation and can be elucidated by the decreasing drought intensity level.On the contrary,the declining trends in GWS can be explained by weakening precipitation and are mostly supported by the increasing drought intensity level in the other 4 anomalies and the affected states,which are Nevada,California,Arizona,New Mexico,Texas,Oklahoma,Kansas,and Colorado.Ourestimates of monthly GWS changes and their trendscan serveas alternativeand beneficial input for the sustainable management of groundwater resources in North America. 展开更多
关键词 North America Gravity recovery and climate experiment (GRACE) GNSS GROUNDWATER Precipitation DROUGHT
下载PDF
Water storage variations in the Poyang Lake Basin estimated from GRACE and satellite altimetry 被引量:4
9
作者 Yang Zhou Shuanggen Jin +1 位作者 Robert Tenzer Jialiang Feng 《Geodesy and Geodynamics》 2016年第2期108-116,共9页
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var... The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water. 展开更多
关键词 Gravity recovery and Climate Experiment(GRACE) Satellite altimetry Terrestrial water storage variations Poyang Lake Basin
下载PDF
Monthly gravity field solution from GRACE range measurements using modified short arc approach 被引量:4
10
作者 Shen Yunzhong Chen Qiujie Xu Houze 《Geodesy and Geodynamics》 2015年第4期261-266,共6页
In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measureme... In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model. 展开更多
关键词 Satellite geodesy Gravity field model Time-variable gravity field Gravity satellite Gravity recovery and Climate Experiment (GRACE)Short arc approach Range data Mass change Tongji-GRACE01
下载PDF
Global sea level variations from altimetry,GRACE and Argo data over 2005-2014 被引量:3
11
作者 Feng Wei Zhong Min 《Geodesy and Geodynamics》 2015年第4期274-279,共6页
Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the g... Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the global SLV and its steric and mass components were estimated by satellite altimetry,Argo float data and the Gravity Recovery and Climate Experiment(GRACE) data over 2005-2014.Space gravimetry observations from GRACE suggested that two-thirds of the global mean sea level rise rate observed by altimetry(i.e.,3.1 ± 0.3 mm/a from 2005 to 2014) could be explained by an increase in ocean mass.Furthermore,the global mean sea level was observed to drop significantly during the2010/2011 La Nina event,which may be attributed to the decline of ocean mass and steric SLV.Since early 2011,the global mean sea level began to rise rapidly,which was attributed to an increase in ocean mass.The findings in this study suggested that the global mean sea-level budget was closed from 2005 to 2014 based on altimetry,GRACE,and Argo data. 展开更多
关键词 Sea level variations Gravity recovery and Climate Experiment (GRACE)Altimetry ArgoOcean mass change La Nina event Steric sea level Sea level budget
下载PDF
Trends in gravity changes from 2009 to 2013 derived from ground-based gravimetry and GRACE data in North China 被引量:3
12
作者 Shen Chongyang Xuan Songbai +1 位作者 Zou Zhengbo Wu Guiju 《Geodesy and Geodynamics》 2015年第6期423-428,共6页
North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change r... North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage. 展开更多
关键词 North China Ground-based gravimetry Gravity recovery and Climate Experiment(GRACE) Polynomial fitting method Gravity changes rate Tectonic activities Geophysical mechanisms Mass redistribution
下载PDF
Water storage changes in North America retrieved from GRACE gravity and GPS data 被引量:2
13
作者 Wang Hansheng Xiang Longwei +4 位作者 Jia Lulu Wu Patrick Steffen Holger Jiang Liming Shen Qiang 《Geodesy and Geodynamics》 2015年第4期267-273,共7页
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am... As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change. 展开更多
关键词 Canadian Prairies Great Lakes Ungava Peninsula Water storage changes Gravity recovery and Climate Experiment (GRACE) data Global Positioning System (GPS) data Glacial isostatic adjustment Separation approach
下载PDF
WHU-Grace01s:A new temporal gravity field model recovered from GRACE KBRR data alone 被引量:2
14
作者 Zhou Hao Luo Zhicai Zhong Bo 《Geodesy and Geodynamics》 2015年第5期316-323,共8页
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa... A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions. 展开更多
关键词 Temporal gravity field model Gravity recovery and Climate Experiment (GRACE) Dynamic integral approach K-Band Range Rate (KBRR) Satellite gravity Spherical harmonics Equivalent water height Geopotential determination
下载PDF
Low-frequency variability of terrestrial water budget in China using GRACE satellite measurements from 2003 to 2010 被引量:1
15
作者 Kang Kaixuan Li Hui +1 位作者 Peng Peng Zou Zhengbo 《Geodesy and Geodynamics》 2015年第6期444-452,共9页
Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthog... Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthogonal Function(EOF) analysis. Results of the second seasonal EOF mode show the influence of the Meiyu season. Annual variability is clearly shown in the precipitation distribution over China, and two new patterns of interannual variability are presented for the first time from observations, where two periods of abrupt acceleration are seen in 2004 and 2008. GRACE successfully measures drought events in southern China, and in this respect, an association with the Arctic Oscillation and El Nino-Southern Oscillation is discussed. This study demonstrates the unique potential of satellite gravity measurements in monitoring TWS variations and large-scale severe drought in China. 展开更多
关键词 Gravity recovery and climate experiment(GRACE) Terrestrial water storage Drought event Global hydrology models Water vapor transport Drought event Empirical orthogonal function(EOF) El Nino-southern oscillation(ENSO)
下载PDF
Characteristics of gravity signal and loading effect in China 被引量:1
16
作者 Yi Shuang Sun Wenke 《Geodesy and Geodynamics》 2015年第4期280-285,共6页
The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key feat... The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions. 展开更多
关键词 Gravity change Loading effect Gravity recovery and Climate Experiment (GRACE)Load love number Global Positioning System (GPS) Seasonal variation Gravity trend in China Comparison of GRACE and GPS
下载PDF
GRACE time-varying gravity field solutions based on PANDA software
17
作者 Xiang Guo Qile Zhao 《Geodesy and Geodynamics》 2018年第2期162-168,共7页
The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called ’two-step’ method for gravity field modellin... The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called ’two-step’ method for gravity field modelling is adopted for this purpose, where the GRACE(Gravity Recovery and Climate Experiment)orbits are derived from the GPS(Global Positioning System) data in a first step followed by a simultaneous determination of dynamic orbit and gravity filed from the GPS-derived orbits and K-band rangerate measurements in a second step. In this way, the monthly gravity field solutions complete to degree and order 96 are produced for the period Jan. 2005 to Dec. 2010. Their performance is assessed by comparing them with the official solutions, i.e., CSR RL05, GFZ RL05 a and JPL RL05. A comparison in the spectral domain in terms of geoid heights reveals that the obtained solutions present the smallest degree amplitudes at degree 30-75. A further analysis of mass changes in the spatial domain demonstrates that the main signals observed from the obtained solutions are in great agreement with those from the official solutions. Remarkably, the correlation coefficients of mass changes in large river basins from the official solutions with respect to those from the obtained solutions are all above 0.97. These results demonstrate that the obtained solutions are comparable to the official solutions. 展开更多
关键词 Time-varying gravity field PANDA(Position and Navigation Data Analyst) GRACE(Gravity recovery and Climate Experiment)
下载PDF
Basic properties of sintering dust from iron and steel plant and potassium recovery 被引量:24
18
作者 Guang Zhan Zhancheng Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1226-1234,共9页
With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these... With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these elements can lead to adverse effects on the environment. Therefore, it is very necessary to determine how to separate these elements from the dust before discharge, Several physical and chemical detection methods were used to study the basic properties of sintering dust. At the same time, preliminary experiments on the recovery of the potassium resources from the sintering dust were carried out. The mean particle size of the electrostatic precipitator (ESP) dust determined by a laser granulometer was 41.468 ~tm. Multi-point BET and single-point BET analysis showed that the surface area of the ESP dust was 2.697 mZ/g. XRD measurements detected the following phases in the ESP dust: Fe203, Fe304, KC1 and NaC1, and Fe203, Fe304 and SiO2 in the water-washed dust. SEM-EDS results proved that in the ESP dust, K mostly existed in the form of KC1 particles without being coated. Leaching experiments showed that the KCI in the ESP dust could be separated and recovered by water leaching and fractional crystallization. Through the recovery experiments, the yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.03%, 13.58%, 14.03% and 9.97%, respectively. This process is technically viable and considerable in economic benefit. There was almost no secondary pollution produced in the whole recovery process. 展开更多
关键词 sintering dust physicochemical analysis recovery experiment potassium resource
原文传递
GRACE反演格陵兰冰盖质量变化的不确定性分析与数据融合 被引量:2
19
作者 贺玉麟 姚宜斌 张豹 《测绘地理信息》 CSCD 2023年第3期25-29,共5页
重力恢复与气候实验(gravity recovery and climate experiment,GRACE)卫星已成为观测冰盖质量变化的主要手段之一,但不同机构发布的GRACE数据在估计格陵兰冰盖质量变化上存在较大差异,在研究长期变化趋势时会产生很大不一致性。针对此... 重力恢复与气候实验(gravity recovery and climate experiment,GRACE)卫星已成为观测冰盖质量变化的主要手段之一,但不同机构发布的GRACE数据在估计格陵兰冰盖质量变化上存在较大差异,在研究长期变化趋势时会产生很大不一致性。针对此问题,先分析了用不同GRACE数据估算的格陵兰冰盖质量变化数据之间的差异,再用三角帽(three-cornered hat,TCH)方法对其进行不确定性分析,并通过数据融合消除了不同数据间的不一致性。 展开更多
关键词 重力恢复与气候实验(gravity recovery and climate experiment GRACE)卫星 格陵兰 三角帽(three-cornered hat TCH)方法
原文传递
Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite 被引量:3
20
作者 Fengfeng Li Liwu Liu +4 位作者 Xin Lan Xiaojun Zhou Wenfeng Bian Yanju Liu Jinsong Leng 《International Journal of Smart and Nano Materials》 SCIE EI 2016年第2期106-118,共13页
The deployable structures based on shape memory polymer com-posites(SMPCs)have been developed for its unique properties,such as high reliability,low-cost,lightweight,and self-deployment without complex mechanical devi... The deployable structures based on shape memory polymer com-posites(SMPCs)have been developed for its unique properties,such as high reliability,low-cost,lightweight,and self-deployment without complex mechanical devices compared with traditional deployable structures.In order to increase the inflatable structure system’s robustness and light the weight of it,a cubic deployable support structure based on SMPC is designed and analyzed pre-liminarily.The cubic deployable support structure based on SMPC consists of four dependent spatial cages,each spatial cage is composed of 12 three-longeron SMPC truss booms and end con-nections.The shape recovery of arc-shaped deployable laminates drive the three-longeron SMPC truss booms to unfold,thus realize the expansion of the deployable support structure.The concept and operation of the cubic deployable support structure are described in detail.A series of experiments are performed on the three-longeron deployable laminates unit and the simplified cubic deployable support structure to investigate the shape recovery behavior in the deployment process.Results indicate that the cubic deployable support structure has a high deployment-tgo-stowage volume ratio and can achieve self-deployment,package,and deploy without complex mechanical devices. 展开更多
关键词 Shape memory polymer composites deployable structure shape recovery experiment
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部