Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential...Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.展开更多
Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has att...Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long pe...Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).展开更多
This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combinat...This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.展开更多
In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative ener...In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data.展开更多
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories...The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the展开更多
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl...Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.展开更多
A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the propose...A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.展开更多
This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electr...This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” ...Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” processing and surface mining/aqueous treatment, are presented. Oil assisted flotation and solvent extraction are discussed as possible future processing alternatives. Subsequent froth treatment and refining methods are described. The rapid expansion of bitumen processing in theFort McMurrayarea has drastically affectedAlberta’s economic, political and social policy. Corresponding strain has been placed on the regional ecosystem. A comparison between wind and bitumen as sources of energy is offered.展开更多
Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the mot...Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the motor/generator mode requires frequent switching and prolonged operation during driving.In this case,the motor temperature will unavoidably rise,potentially triggering motor thermal protection(MTP).Activating MTP increases the risk of motor component failure,and the EV typically disables the BER function.Thus,maximizing BER while reducing the risk of motor overheating is a challenging problem.To address this issue,this article proposes a predictive BER strategy with MTP using the non-smooth Pontryagin Minimum Principle(NSPMP)for EVs.Firstly,a Markov long short-term memory(MLSTM)model is designed to obtain future velocity information.Secondly,the BER problem with MTP in the studied EV is embedded in a model predictive control(MPC)framework.Then,under the MPC framework,the NSPMP strategy is proposed to resolve the problem of MTP.Finally,the performance of the proposed strategy is verified through simulation and a hardware-in-loop test.The results show that in two real-world driving cycles,compared to the rule-based strategy,the proposed strategy reduced power consumption by 1.24%and0.96%,respectively,and effectively limited motor temperature.Additionally,under global cycle conditions,this strategy demonstrated better MTP control performance compared to other benchmark strategies.展开更多
This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage med...This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.展开更多
When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to...When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to rapid population growth and urbanization, understanding and quantification of the interdependency between water and energy, along with analyzing nexus interactions, trade-offs and risks are a pre-requisite for effective and integrated planning and management of these two key sectors. This paper performs an assessment of the water-energy nexus in the municipal sector of the Eastern Province of Saudi Arabia, where the electric energy footprint in the water value chain (groundwater, desalination and wastewater treatment) and the water footprint in electric energy generation (thermal power plants) are quantified using data for the year 2013. The results confirmed the high and strong dependency on energy for the municipal water cycle in the Eastern Province and revealed that energy generation dependency on freshwater resources is also major and evident, especially at farther distances from the coastal areas. Thermal desalination is by far the most energy intensive stage among the entire Eastern Province water cycle. In 2013, it was estimated 13% of the Eastern Province energy generation capacity goes for desalination, that’s a 5% of the Kingdom capacity. Substantial energy input for desalination in the Eastern Province is attributed to the production and conveyance of water to the Capital Riyadh (48.9 kWh/m3 and 4.2 kWh/m3 respectively). As for groundwater pumping, it was estimated that 206.2 GWH was used for pumping 268 MCM in 2013 (0.764 kWh/m3). Energy requirement for primary, secondary and tertiary wastewater treatment was found to be the least (2 - 108 GWH) and was equivalent to an average of 0.4 kWh/m3. The water footprint in electricity generation was estimated to be about 739,308 m3 in 2013 (0.125 m3/kWh), a relatively higher value compared to the norm of gas combustion turbine cooling water requirement around the world, and is especially significant for water scarce Kingdom. Anthropogenic Greenhouse Gases (GHG) emission was computed to be around 17 Million Ton of carbon dioxide equivalent (CO2e) for the entire water supply chain, with desalination having the highest carbon footprint in the whole water cycle (16.9 MT of CO2e). Carbon emissions from electric energy generation through power plants had significantly exceeded the entire water supply chain’s carbon footprint. Alternative mitigation options of management and technology fixes are suggested to reduce energy consumption in the water cycle, minimize the water footprint in electric generation, and mitigate associated GHG emission.展开更多
Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical hea...Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.展开更多
基金financially supported by the National Natural Science Foundation of China, China (Nos. 52274252 and 51874047)the Special Fund for the Construction of Innovative Provinces in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.
文摘Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
文摘Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).
文摘This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.
文摘In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data.
文摘The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+2 种基金the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191 and 2110616751104139)China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)
基金supported by the National Natural Science Foundation of China(Grants nos.11775155,51561135013,21603202)。
文摘Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.
基金Supported by the National Natural Science Foundation of China(20876056,20536020)the PhD Program Fund from Ministry of Education of China(20100172110016)
文摘A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.
基金the National Natural Science Foundation of China(No.51976018)the National Natural Science Foundation for Young Scientists of China(No.51606022)+3 种基金Natural Science Foundation of Chongqing,China(No.cstc2017jcyjAX0203)Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing,China(No.cx2017020)the Fundamental Research Funds for the Central Universities(No.106112016CDJXY145504)Research Funds of Key Laboratory of Low-grade Energy Utilization Technologies and Systems(No.LLEUTS-2018005).
文摘This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.
文摘Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” processing and surface mining/aqueous treatment, are presented. Oil assisted flotation and solvent extraction are discussed as possible future processing alternatives. Subsequent froth treatment and refining methods are described. The rapid expansion of bitumen processing in theFort McMurrayarea has drastically affectedAlberta’s economic, political and social policy. Corresponding strain has been placed on the regional ecosystem. A comparison between wind and bitumen as sources of energy is offered.
基金supported by the National Natural Science Foundation of China(Grant Nos.52275047,51975048)。
文摘Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the motor/generator mode requires frequent switching and prolonged operation during driving.In this case,the motor temperature will unavoidably rise,potentially triggering motor thermal protection(MTP).Activating MTP increases the risk of motor component failure,and the EV typically disables the BER function.Thus,maximizing BER while reducing the risk of motor overheating is a challenging problem.To address this issue,this article proposes a predictive BER strategy with MTP using the non-smooth Pontryagin Minimum Principle(NSPMP)for EVs.Firstly,a Markov long short-term memory(MLSTM)model is designed to obtain future velocity information.Secondly,the BER problem with MTP in the studied EV is embedded in a model predictive control(MPC)framework.Then,under the MPC framework,the NSPMP strategy is proposed to resolve the problem of MTP.Finally,the performance of the proposed strategy is verified through simulation and a hardware-in-loop test.The results show that in two real-world driving cycles,compared to the rule-based strategy,the proposed strategy reduced power consumption by 1.24%and0.96%,respectively,and effectively limited motor temperature.Additionally,under global cycle conditions,this strategy demonstrated better MTP control performance compared to other benchmark strategies.
基金funded by 2017 Research Project of Tianjin Sino-German University of Applied Sciences(Project No.zdkt2017-001)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2018KJ260)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2020ZD03).
文摘This paper briefly summarizes the current status of typical solar thermal power plant system,including system composition,thermal energy storage medium and performance.The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system,because some renewable energy sources such as solar and wind are unpredictable.A thermal storage system is therefore necessary to store energy for continuous usage.Based on the form of storage or the mode of system connection,heat exchangers of a thermal storage system can produce different temperature ranges of heat transfer fluid to realize energy cascade utilization.Founded upon the review,a small hybrid energy system with a molten-salt energy storage system is proposed to solve the problems of heating,cooling,and electricity consumption of a 1000 m2 training hall at school.The system uses molten-salt storage tank,water tank and steam generator to change the temperature of heat transfer fluid,in order to realize thermal energy cascade utilization.Compared to the existing heating and cooling system,the proposed system needs more renewable energy and less municipal energy to achieve the same results according to simulation analysis.Furthermore,by improving the original heating and cooling system,PMV has been improved.The comprehensive efficiency of solar energy utilization has been increased to 83%.
文摘When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to rapid population growth and urbanization, understanding and quantification of the interdependency between water and energy, along with analyzing nexus interactions, trade-offs and risks are a pre-requisite for effective and integrated planning and management of these two key sectors. This paper performs an assessment of the water-energy nexus in the municipal sector of the Eastern Province of Saudi Arabia, where the electric energy footprint in the water value chain (groundwater, desalination and wastewater treatment) and the water footprint in electric energy generation (thermal power plants) are quantified using data for the year 2013. The results confirmed the high and strong dependency on energy for the municipal water cycle in the Eastern Province and revealed that energy generation dependency on freshwater resources is also major and evident, especially at farther distances from the coastal areas. Thermal desalination is by far the most energy intensive stage among the entire Eastern Province water cycle. In 2013, it was estimated 13% of the Eastern Province energy generation capacity goes for desalination, that’s a 5% of the Kingdom capacity. Substantial energy input for desalination in the Eastern Province is attributed to the production and conveyance of water to the Capital Riyadh (48.9 kWh/m3 and 4.2 kWh/m3 respectively). As for groundwater pumping, it was estimated that 206.2 GWH was used for pumping 268 MCM in 2013 (0.764 kWh/m3). Energy requirement for primary, secondary and tertiary wastewater treatment was found to be the least (2 - 108 GWH) and was equivalent to an average of 0.4 kWh/m3. The water footprint in electricity generation was estimated to be about 739,308 m3 in 2013 (0.125 m3/kWh), a relatively higher value compared to the norm of gas combustion turbine cooling water requirement around the world, and is especially significant for water scarce Kingdom. Anthropogenic Greenhouse Gases (GHG) emission was computed to be around 17 Million Ton of carbon dioxide equivalent (CO2e) for the entire water supply chain, with desalination having the highest carbon footprint in the whole water cycle (16.9 MT of CO2e). Carbon emissions from electric energy generation through power plants had significantly exceeded the entire water supply chain’s carbon footprint. Alternative mitigation options of management and technology fixes are suggested to reduce energy consumption in the water cycle, minimize the water footprint in electric generation, and mitigate associated GHG emission.
文摘Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.