This study presented a quantitative investigation of deformation behavior and dynamic recrystallization of low-alloy high- strength Ni-Cr-Mo-V steels during hot deformation. A series of isothermal compression experime...This study presented a quantitative investigation of deformation behavior and dynamic recrystallization of low-alloy high- strength Ni-Cr-Mo-V steels during hot deformation. A series of isothermal compression experiments were performed at temperatures ranging from 800 to 1200 ℃ and strain rates from 0.01 to 10 s^-1 with a height reduction of 60%. A complete Arrhenius constitutive model and processing maps were developed. The results showed that the constitutive model had the ability to predict the flow stress with an average absolute relative error of 〈 5.7%. The processing maps constructed at strains of 0.2, 0.4, and 0.8 showed that flow instability was prone to occur at higher strain. Dynamic recrystallization tended to take place at higher temperatures (900-1200 ℃) and lower strain rates (0.01^-1 s^-1). The critical strain for the onset of dynamic recrystallization was determined, and a kinetics model was developed. The predicted results for recrystaUization volume fraction and flow stress were compared with the experimental data, which indicated that the model was accurate and reliable.展开更多
基金supported financially by the Scientific Research Foundation of Tianjin University of Technology and Education (No.KYQD1801)the National Natural Science Foundation of Tianjin City (No.13JCYBJC38900)
文摘This study presented a quantitative investigation of deformation behavior and dynamic recrystallization of low-alloy high- strength Ni-Cr-Mo-V steels during hot deformation. A series of isothermal compression experiments were performed at temperatures ranging from 800 to 1200 ℃ and strain rates from 0.01 to 10 s^-1 with a height reduction of 60%. A complete Arrhenius constitutive model and processing maps were developed. The results showed that the constitutive model had the ability to predict the flow stress with an average absolute relative error of 〈 5.7%. The processing maps constructed at strains of 0.2, 0.4, and 0.8 showed that flow instability was prone to occur at higher strain. Dynamic recrystallization tended to take place at higher temperatures (900-1200 ℃) and lower strain rates (0.01^-1 s^-1). The critical strain for the onset of dynamic recrystallization was determined, and a kinetics model was developed. The predicted results for recrystaUization volume fraction and flow stress were compared with the experimental data, which indicated that the model was accurate and reliable.