Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆...使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。展开更多
Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to ...Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to the strict time serial dependency,making it difficult to realize a long-term memory function.On the other hand,RNNs cells are highly complex,which will signifi-cantly increase computational complexity and cause waste of computational resources during model training.In this paper,an improved Time Feedforward Connections Recurrent Neural Networks(TFC-RNNs)model was first proposed to address the gradient issue.A parallel branch was introduced for the hidden state at time t−2 to be directly transferred to time t without the nonlinear transforma-tion at time t−1.This is effective in improving the long-term dependence of RNNs.Then,a novel cell structure named Single Gate Recurrent Unit(SGRU)was presented.This cell structure can reduce the number of parameters for RNNs cell,consequently reducing the computational complexity.Next,applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties.Finally,the performance of our proposed TFC-SGRU was verified through sev-eral experiments in terms of long-term memory and anti-interference capabilities.Experimental results demonstrated that our proposed TFC-SGRU model can cap-ture helpful information with time step 1500 and effectively filter out the noise.The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability.展开更多
针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字...针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
文摘使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。
基金This work was funded by the National Science Foundation of Hunan Province(2020JJ2029)。
文摘Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to the strict time serial dependency,making it difficult to realize a long-term memory function.On the other hand,RNNs cells are highly complex,which will signifi-cantly increase computational complexity and cause waste of computational resources during model training.In this paper,an improved Time Feedforward Connections Recurrent Neural Networks(TFC-RNNs)model was first proposed to address the gradient issue.A parallel branch was introduced for the hidden state at time t−2 to be directly transferred to time t without the nonlinear transforma-tion at time t−1.This is effective in improving the long-term dependence of RNNs.Then,a novel cell structure named Single Gate Recurrent Unit(SGRU)was presented.This cell structure can reduce the number of parameters for RNNs cell,consequently reducing the computational complexity.Next,applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties.Finally,the performance of our proposed TFC-SGRU was verified through sev-eral experiments in terms of long-term memory and anti-interference capabilities.Experimental results demonstrated that our proposed TFC-SGRU model can cap-ture helpful information with time step 1500 and effectively filter out the noise.The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability.
文摘针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性.