期刊文献+
共找到312篇文章
< 1 2 16 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting recurrent neural network(rnn)
下载PDF
基于RF-RNN模型的DNS隐蔽信道检测方法
2
作者 冯燕茹 《信息与电脑》 2024年第3期158-160,共3页
为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类... 为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类,通过深度学习方法挖掘更高阶的特征表示。实验结果表明,与单一模型相比,该方法在检测准确性和健壮性方面均取得了显著提升。 展开更多
关键词 域名系统(DNS) 随机森林(RF) 循环神经网络(rnn)
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
3
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection recurrent Neural Network(rnn) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
基于时空记忆解耦RNN的雷暴预测方法 被引量:3
4
作者 何诗扬 汪玲 +1 位作者 朱岱寅 钱君 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3474-3480,共7页
使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆... 使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。 展开更多
关键词 循环神经网络 雷暴预测 气象雷达 深度学习
下载PDF
一种基于CNN-RNN模型的图像检索技术 被引量:1
5
作者 汤永斌 《信息与电脑》 2023年第9期182-184,共3页
图像检索是一项重要的研究课题,涉及如何快速、准确地检索和管理海量的图像数据。传统的图像检索技术主要依赖图像的视觉特征或文本描述进行匹配,但是难以充分理解图像的语义信息,对复杂场景的适应性较差。针对这一问题,文章提出了一种... 图像检索是一项重要的研究课题,涉及如何快速、准确地检索和管理海量的图像数据。传统的图像检索技术主要依赖图像的视觉特征或文本描述进行匹配,但是难以充分理解图像的语义信息,对复杂场景的适应性较差。针对这一问题,文章提出了一种基于卷积神经网络-循环神经网络(Convolutional Neural Networks-Recurrent Neural Network,CNN-RNN)模型的图像检索技术。该技术将CNN和RNN相结合,构建了一个统一的深度学习框架。其中,CNN模型用于从图像中提取全局特征,RNN模型用于学习图像与标签之间的语义关联和共现依赖。文章通过将CNN输出的特征序列输入到RNN模型中,实现了对图像全局语义信息的捕获。将设计系统在多个数据集上进行实验,结果表明,设计的方法能够有效提高图像检索的效率和准确性。 展开更多
关键词 图像检索 循环神经网络(rnn)模型 卷积神经网络(CNN)模型
下载PDF
基于注意力机制RNN模型的癫痫患者脑电信号识别方法
6
作者 周嵩 高天寒 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期1098-1103,共6页
针对癫痫患者脑电信号(electroencephalogram,EEG)数据识别提出了一种基于注意力机制的RNN(recurrent neural networks)模型.传统EEG特征分析耗时巨大且过度依赖专家经验,极大限制了脑活动识别方法的应用推广.因此,提出一种新的EEG识别... 针对癫痫患者脑电信号(electroencephalogram,EEG)数据识别提出了一种基于注意力机制的RNN(recurrent neural networks)模型.传统EEG特征分析耗时巨大且过度依赖专家经验,极大限制了脑活动识别方法的应用推广.因此,提出一种新的EEG识别方法以解决上述问题.首先对癫痫患者EEG的基本特征进行分析,进而采用基于注意力机制RNN模型消除各种干扰信号,利用XGBoost分类器识别EEG数据的类别,达到自动细化识别原始EEG的目的,最后在公共EEG数据集上进行大量实验,验证所提方法对EEG识别的准确性.实验结果表明,与一些成熟的EEG识别方法相比,本文所提方法在识别精度上有了进一步提升. 展开更多
关键词 脑电信号 注意力机制 rnn模型 XGBoost分类器 癫痫患者
下载PDF
An Improved Time Feedforward Connections Recurrent Neural Networks
7
作者 Jin Wang Yongsong Zou Se-Jung Lim 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2743-2755,共13页
Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to ... Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to the strict time serial dependency,making it difficult to realize a long-term memory function.On the other hand,RNNs cells are highly complex,which will signifi-cantly increase computational complexity and cause waste of computational resources during model training.In this paper,an improved Time Feedforward Connections Recurrent Neural Networks(TFC-RNNs)model was first proposed to address the gradient issue.A parallel branch was introduced for the hidden state at time t−2 to be directly transferred to time t without the nonlinear transforma-tion at time t−1.This is effective in improving the long-term dependence of RNNs.Then,a novel cell structure named Single Gate Recurrent Unit(SGRU)was presented.This cell structure can reduce the number of parameters for RNNs cell,consequently reducing the computational complexity.Next,applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties.Finally,the performance of our proposed TFC-SGRU was verified through sev-eral experiments in terms of long-term memory and anti-interference capabilities.Experimental results demonstrated that our proposed TFC-SGRU model can cap-ture helpful information with time step 1500 and effectively filter out the noise.The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability. 展开更多
关键词 Time feedforward connections long-short term memory gated recurrent unit SGRU rnns
下载PDF
基于机器学习的通信网络入侵检测系统 被引量:1
8
作者 罗卓君 《通信电源技术》 2024年第3期128-130,共3页
文章提出一种基于机器学习的创新型方法,以提高通信网络入侵检测系统的检测效果。首先,深入研究了通信网络入侵检测的基本架构,以全面理解入侵行为的多样性和复杂性。其次,将正则化约束引入循环神经网络(Recurrent Neural Networks,RNN... 文章提出一种基于机器学习的创新型方法,以提高通信网络入侵检测系统的检测效果。首先,深入研究了通信网络入侵检测的基本架构,以全面理解入侵行为的多样性和复杂性。其次,将正则化约束引入循环神经网络(Recurrent Neural Networks,RNN)模型,旨在提高检测准确性和模型的泛化能力。最后,利用UNSW-NB15数据集进行实验,证明所提方法的有效性。实验采用混淆矩阵进行结果分析,并通过精确度、召回率、F1分数等指标综合评估模型性能。结果表明,文章所提方法在通信网络入侵检测任务中表现出色,具有较高的准确性和泛化能力。 展开更多
关键词 机器学习 入侵检测 循环神经网络(rnn) 正则化约束
下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制
9
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
下载PDF
基于遗传优化聚类的GRU无损电力监测数据压缩
10
作者 屈志坚 帅诚鹏 +2 位作者 吴广龙 梁家敏 李迪 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期1-8,18,共9页
针对电力调度中心监测数据记录体量大、存储困难的问题,提出基于遗传优化K-means聚类的门控循环单元神经网络无损数据压缩方法。首先,搭建分布式集群,将多维原始电力数据聚类成相似性较高的数据块,并利用遗传算法对聚类进行寻优,提高数... 针对电力调度中心监测数据记录体量大、存储困难的问题,提出基于遗传优化K-means聚类的门控循环单元神经网络无损数据压缩方法。首先,搭建分布式集群,将多维原始电力数据聚类成相似性较高的数据块,并利用遗传算法对聚类进行寻优,提高数据聚类的效果;再通过门控循环单元神经网络训练数据编码的概率分布模型,结合算术编码对数据进行编码压缩;最后,以多个电力数据集为算例进行分析。经验证本文所提的压缩算法能实现数据的高比例压缩、优化集群性能。 展开更多
关键词 电力数据 遗传算法 聚类分析 循环神经网络 分布式集群压缩
下载PDF
面向降雨预报的雷达回波预测序列外推方法 被引量:2
11
作者 罗健文 邹茂扬 +2 位作者 杨昊 陈敏 杨康权 《计算机应用研究》 CSCD 北大核心 2024年第4期1138-1142,共5页
雷达回波外推方法广泛应用于降雨预报中。针对雷达回波中的预测精度不够高的问题,提出了一种基于循环神经网络的深度学习模型DIPredRNN。该模型通过引入空间和通道的双注意力机制,将长时间的时间信息和通道信息结合起来,提高了时间记忆... 雷达回波外推方法广泛应用于降雨预报中。针对雷达回波中的预测精度不够高的问题,提出了一种基于循环神经网络的深度学习模型DIPredRNN。该模型通过引入空间和通道的双注意力机制,将长时间的时间信息和通道信息结合起来,提高了时间记忆的长期依赖;通过引入隐藏状态和输入的交互框架,保留了更多的特征,提高了时间记忆的短期依赖。该模型在HKO-7数据集和四川数据集上同经典模型以及诸多先进模型进行实验对比,该模型从外推图像、MSE、SSIM、CSI-30~50 dbz多个指标对比中都取得最佳效果。实验证明了DIPredRNN提高了雷达回波预测效果,拥有先进的性能。 展开更多
关键词 雷达回波外推 深度学习 循环神经网络
下载PDF
基于GRU-BP算法的高精度动态物流称重系统
12
作者 康杰 《机电工程》 CAS 北大核心 2024年第6期1127-1134,共8页
针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,... 针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,并将加速度信号作为模型输入信号,进行了特征补偿;然后,基于深度学习算法,提出了一种改进的门控循环单元模型,在该模型采样区间内将压力与振动改写为时序化信号,并将其共同输入门控循环单元(GRU)模型;最后,对GRU模型进行了改进,对其结构输出了层堆叠误差反向传播神经网络(BP),有效加强了模型的非线性映射能力。研究结果表明:在各类传动速度及测试货物下,该模型的最大测量误差相对于同类型深度学习模型长短期记忆(LSTM)神经网络、循环神经网络(RNN)时序模型及传统数值平均模型的误差,依次降低了16.14%、27.14%、76%,可用于各类称重系统。 展开更多
关键词 深度学习 动态测量系统 门控循环单元 反向传播神经网络 振动补偿 长短期记忆神经网络 循环神经网络
下载PDF
基于深度残差网络和注意力机制的特殊车牌识别 被引量:1
13
作者 王昊 陈黎 《计算机工程与设计》 北大核心 2024年第1期291-298,共8页
为解决现有车牌识别算法在面对旋转倾斜车牌以及双行车牌图像时识别精度偏低的问题,提出一种基于深度残差网络和注意力机制的特殊车牌识别算法。优化深度残差网络结构,使模型更好提取低分辨率车牌图像的特征;取消对特征图平均池化操作,... 为解决现有车牌识别算法在面对旋转倾斜车牌以及双行车牌图像时识别精度偏低的问题,提出一种基于深度残差网络和注意力机制的特殊车牌识别算法。优化深度残差网络结构,使模型更好提取低分辨率车牌图像的特征;取消对特征图平均池化操作,在保留图像全局特征的前提下,将多维特征化为特征序列;引入注意力机制对特征序列并行解码,加快模型推理速度,提升特殊车牌的识别精度。实验结果表明,与现有的文字识别模型CRNN、DAN、ASTER对比,在公开车牌数据集CCPD上取得了更高的准确率,验证了模型的有效性。 展开更多
关键词 车牌识别 文字识别 多头注意力 自注意力机制 卷积神经网络 循环神经网络 残差网络
下载PDF
基于多特征融合与双向RNN的细粒度意见分析 被引量:17
14
作者 郝志峰 黄浩 +1 位作者 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2018年第7期199-204,211,共7页
文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关... 文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关系。针对该问题,提出利用双向RNN构建基于序列标注的细粒度意见分析模型。通过融合文本的词向量、词性和依存关系等语言学特征,学习文本的修饰和语义信息,并设计一个时间序列标注模型,同时抽取属性实体判断文本的情感极性。在真实数据集上的实验结果表明,与CRF、TD-LSTM、AELSTM等模型相比,该模型情感分类效果提升明显。 展开更多
关键词 特征融合 词向量 循环神经网络 属性抽取 细粒度意见分析
下载PDF
不完备数据下的聚酯熔体特性黏度预测方法
15
作者 毕金茂 张朋 +2 位作者 张洁 赵春财 崔利 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第4期534-544,共11页
特性黏度是衡量聚酯熔体质量的关键指标,对其进行精准预测有利于提前发现聚酯熔体潜在的质量问题,及时调整工艺参数,减少企业损失.考虑到聚酯熔体生产过程的数据不完备性、数据时序性以及高维冗余性,提出了不完备数据下聚酯熔体的特性... 特性黏度是衡量聚酯熔体质量的关键指标,对其进行精准预测有利于提前发现聚酯熔体潜在的质量问题,及时调整工艺参数,减少企业损失.考虑到聚酯熔体生产过程的数据不完备性、数据时序性以及高维冗余性,提出了不完备数据下聚酯熔体的特性黏度预测方法.针对聚酯熔体极端生产环境造成的数据不完备问题,设计了以卷积神经网络判别器和注意力长短期记忆神经网络生成器为架构的缺失数据生成对抗网络(MDGAN),通过对抗生成机制实现了缺失数据的填充.针对聚酯熔体生产过程中高维冗余和时序双向因果特性,设计了基于极端梯度提升双向门控循环单元(XGBoost-BiGRU)的特性黏度预测模型,通过极端梯度提升算法进行特征筛选,获取预测模型输入变量,再利用双向门控循环单元捕捉数据的时序双向因果关系,实现特性黏度的精准预测.浙江某聚酯纤维生产企业的实际数据测试结果表明,MDGAN算法在不同缺失率数据集下的填充精度均优于KNN、RF、MICE、GAIN数据填充算法,XGBoost-BiGRU特性黏度预测方法较STL-GPR、CAGRU、BiGRU算法优势显著,结合MDGAN的特性黏度预测方法能有效解决数据不完备下的聚酯熔体特性黏度预测问题. 展开更多
关键词 特性黏度预测 不完备数据 生成对抗网络 循环神经网络
下载PDF
多船会遇场景下基于循环神经网络的船舶航速预测
16
作者 严忠伟 赵建森 +3 位作者 吴欣雨 王胜正 陈信强 高原 《上海海事大学学报》 北大核心 2024年第2期1-6,共6页
为进一步提高复杂环境下的船舶航速预测精度,提出一种在多船会遇场景下基于循环神经网络(recurrent neural network,RNN)的船舶航速预测模型。从船舶自动识别系统(automatic identification system,AIS)数据中提取构成多船会遇场景的船... 为进一步提高复杂环境下的船舶航速预测精度,提出一种在多船会遇场景下基于循环神经网络(recurrent neural network,RNN)的船舶航速预测模型。从船舶自动识别系统(automatic identification system,AIS)数据中提取构成多船会遇场景的船舶航行动态信息(时间、航速等),采用插值法进行等时间间隔化处理,并构建基于RNN的船舶航速预测模型。采用长江口外水域的AIS数据,分别在不同会遇场景下进行实例验证。实验结果表明:在案例1和案例2场景下,RNN模型预测结果的平均绝对误差、均方误差、均方根误差、平均绝对百分比误差均比长短期记忆神经网络模型和支持向量机模型的小,说明RNN模型的预测精度比其他两种模型的高。 展开更多
关键词 交通安全 智能船舶 航速预测 循环神经网络(rnn) 船舶自动识别系统(AIS)
下载PDF
基于双胞循环神经网络的雷达捷变频行为识别
17
作者 孟宪鹏 刘利民 +2 位作者 董健 王力 胡文华 《系统工程与电子技术》 EI CSCD 北大核心 2024年第3期898-905,共8页
雷达程控捷变频行为具有一定的抗窄带瞄准式干扰能力,同时能够实现测量和动目标指示等功能,给干扰引导带来一定的困难。对此,提出随机频率模板的方法,对雷达程控捷变频行为进行建模,并设计了一种双胞循环神经网络识别程控捷变频行为。... 雷达程控捷变频行为具有一定的抗窄带瞄准式干扰能力,同时能够实现测量和动目标指示等功能,给干扰引导带来一定的困难。对此,提出随机频率模板的方法,对雷达程控捷变频行为进行建模,并设计了一种双胞循环神经网络识别程控捷变频行为。仿真实验结果表明,双胞循环神经网络能够有效识别雷达程控捷变频行为,并以一定的概率预测未来的频率序列,能够有效地为窄带瞄准式干扰提供引导。仿真结果也表明,所提网络能够有效记忆和识别一组非线性时间序列。 展开更多
关键词 捷变频 行为识别 循环神经网络 记忆细胞
下载PDF
线性合成的双粒度RNN集成系统 被引量:2
18
作者 张亮 黄曙光 胡荣贵 《自动化学报》 EI CSCD 北大核心 2011年第11期1402-1406,共5页
针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字... 针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性. 展开更多
关键词 脱机文字识别 递归神经网络 集成系统 字符分割
下载PDF
基于RNN的中文二分结构句法分析 被引量:15
19
作者 谷波 王瑞波 +1 位作者 李济洪 李国臣 《中文信息学报》 CSCD 北大核心 2019年第1期35-45,共11页
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换... 为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。 展开更多
关键词 层次句法分析 循环神经网络(rnn) m×2CV序贯t-检验
下载PDF
基于神经网络的VSLAM综述
20
作者 尚光涛 陈炜峰 +3 位作者 吉爱红 周铖君 王曦杨 徐崇辉 《南京信息工程大学学报》 CAS 北大核心 2024年第3期352-363,共12页
传统的基于视觉的SLAM技术成果颇丰,但在具有挑战性的环境中难以取得想要的效果.深度学习推动了计算机视觉领域的快速发展,并在图像处理中展现出愈加突出的优势.将深度学习与基于视觉的SLAM结合是一个热门话题,诸多研究人员的努力使二... 传统的基于视觉的SLAM技术成果颇丰,但在具有挑战性的环境中难以取得想要的效果.深度学习推动了计算机视觉领域的快速发展,并在图像处理中展现出愈加突出的优势.将深度学习与基于视觉的SLAM结合是一个热门话题,诸多研究人员的努力使二者的广泛结合成为可能.本文从深度学习经典的神经网络入手,介绍了深度学习与传统基于视觉的SLAM算法的结合,概述了卷积神经网络(CNN)与循环神经网络(RNN)在深度估计、位姿估计、闭环检测等方面的成就,分析了神经网络在语义信息提取方面的优点,以期为未来自主移动机器人真正自主化提供帮助.最后,对未来VSLAM发展进行了展望. 展开更多
关键词 同时定位和地图构建(SLAM) 深度学习 卷积神经网络(CNN) 循环神经网络(rnn) 位姿估计 闭环检测 语义
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部