Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence ...Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.展开更多
This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting...This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting and the game-theoretic approach to the H∞filtering, a new optimization-based estimation scheme for uncertain linear systems is proposed, namely the H∞-full information estimator, H∞-FIE in short. In this formulation, the set of processed data grows with time as more measurements are received preventing recursive formulations as in Kalman filtering. To overcome the latter problem, a moving horizon approximation to the H∞-FIE is also presented, the H∞-MHE in short. This moving horizon approximation is achieved since the arrival cost is suitably defined for the proposed scheme. Sufficient conditions for the stability of the H∞-MHE are derived. Simulation results show the benefits of the proposed scheme when compared with two H∞filters and the well-known Kalman filter.展开更多
基金Supported by National Key Research and Development Program of China(2016YFF0201005)。
文摘Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.
基金supported by the European Community s Seventh Framework Programme FP7/2007-2013(No.223854)COLCIENCIAS-Departamento Administrativo de Ciencia,Tecnologíae Innovacin de Colombia
文摘This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting and the game-theoretic approach to the H∞filtering, a new optimization-based estimation scheme for uncertain linear systems is proposed, namely the H∞-full information estimator, H∞-FIE in short. In this formulation, the set of processed data grows with time as more measurements are received preventing recursive formulations as in Kalman filtering. To overcome the latter problem, a moving horizon approximation to the H∞-FIE is also presented, the H∞-MHE in short. This moving horizon approximation is achieved since the arrival cost is suitably defined for the proposed scheme. Sufficient conditions for the stability of the H∞-MHE are derived. Simulation results show the benefits of the proposed scheme when compared with two H∞filters and the well-known Kalman filter.