A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also ...A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.展开更多
A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calcula...A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calculations. The approach is classical but the formulation of coupled recursion relations is new. Further, use of infinite series for computing π is explored by an improved version of Leibniz’s series expansion. Finally, some remarks with reference to π are made on a relatively recently rediscovered Sumerian tablet depicting geometric figures.展开更多
In this paper, we present some polynomial identities of Hurwitz-Hodge integral. Subsequently, we present how to obtain some Hurwitz-Hodge integral identities from the polynomial identity. Lastly, we give a recursion f...In this paper, we present some polynomial identities of Hurwitz-Hodge integral. Subsequently, we present how to obtain some Hurwitz-Hodge integral identities from the polynomial identity. Lastly, we give a recursion formula for Hurwitz-Hodge integral (TbL λgλ1)ag.展开更多
In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formula...In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.展开更多
Several(generalized)hypergeometric functions and a variety of their extensions have been presented and investigated in the literature by many authors.In the present paper,we investigate four new hypergeometric functio...Several(generalized)hypergeometric functions and a variety of their extensions have been presented and investigated in the literature by many authors.In the present paper,we investigate four new hypergeometric functions in four variables and then establish several recursion formulas for these new functions.Also,some interesting particular cases and consequences of our results are discussed.展开更多
Though the Bǎcklund transformation on time-like surfaces with constant mean curvature surfaces in R^2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related ...Though the Bǎcklund transformation on time-like surfaces with constant mean curvature surfaces in R^2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related integrable system cannot be avoided when the Bǎcklund transformation is used, For sake of this, in this article, some special work is done to reform the Bǎcklund transformation to a recursion formula, by which we can construct time-like surfaces with constant mean curvature form known ones just by quadrature procedure.展开更多
We deal with the (2 + 1)-extension of classical Boussinesq system,which can reduce to several meaningful(1 + 1)-dimensional systems.By studying its Lax pair,we put forward invariances of Lax pair at first,then a recur...We deal with the (2 + 1)-extension of classical Boussinesq system,which can reduce to several meaningful(1 + 1)-dimensional systems.By studying its Lax pair,we put forward invariances of Lax pair at first,then a recursionformula depending on an arbitrary function is derived.At last,some solutions of the (2 + 1)-extension of classicalBoussinesq system are digged out by using the formula.展开更多
The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era,...The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.展开更多
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly s...The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.展开更多
The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with...The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of the numerical results by the present method is much higher than that by the traditional quadrature method.展开更多
In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|...In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|(i.e., the time of ruin, the surplus before ruin and the deficit at ruin) by the method of mass function of up-crossing zero points, as given by Liu and Zhao (2007). By using the same method, the recursive formula of supremum distribution is obtained. An example is included to illustrate the results of the model.展开更多
The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler...The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler numbers of higher order were extended.展开更多
In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models...In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.展开更多
In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform ...In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.展开更多
Given a new Double-Markov risk model DM = (μ, Q, v, H; Y, Z) and Double-Markov risk process U = {U(t), t 〉 0}. The ruin or survival problem is addressed. Equations which the survival probability satisfied and th...Given a new Double-Markov risk model DM = (μ, Q, v, H; Y, Z) and Double-Markov risk process U = {U(t), t 〉 0}. The ruin or survival problem is addressed. Equations which the survival probability satisfied and the formulas of calculating survival probability are obtained. Recursion formulas of calculating the survival probability and analytic expression of recursion items are obtained. The conclusions are expressed by Q matrix for a Markov chain and transition probabilities for another Markov Chain.展开更多
From the basic properties of skein systems, we build a generalized tangle algebra (GTA). The elements of GTA are four basic tangles. There are three operations, which are connection, splicing and scalar multiplication...From the basic properties of skein systems, we build a generalized tangle algebra (GTA). The elements of GTA are four basic tangles. There are three operations, which are connection, splicing and scalar multiplication. From GTA we derive two generalized recursion formulae (GRF) and prove the existence of a generalized skein relation which satisfies GRF. The obtained generalized skein relation epitomizes all generalizations from the Jones polynomial and thus forms a unified model. Two important topological parameters, twisting measure and loop values, appear explicitly in the expressions of the unified model, and this fact greatly simplifies the operations.展开更多
The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The ...The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The recursion formula is factorized completely.展开更多
基金This research is partially supported by NNSF of China.
文摘A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.
文摘A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calculations. The approach is classical but the formulation of coupled recursion relations is new. Further, use of infinite series for computing π is explored by an improved version of Leibniz’s series expansion. Finally, some remarks with reference to π are made on a relatively recently rediscovered Sumerian tablet depicting geometric figures.
文摘In this paper, we present some polynomial identities of Hurwitz-Hodge integral. Subsequently, we present how to obtain some Hurwitz-Hodge integral identities from the polynomial identity. Lastly, we give a recursion formula for Hurwitz-Hodge integral (TbL λgλ1)ag.
基金The project supported by National Natural Science Foundation of China under Grant No.10101025
文摘In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.
文摘Several(generalized)hypergeometric functions and a variety of their extensions have been presented and investigated in the literature by many authors.In the present paper,we investigate four new hypergeometric functions in four variables and then establish several recursion formulas for these new functions.Also,some interesting particular cases and consequences of our results are discussed.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10571149, 10571165, and 10101025 We are grateful to Sha Nan-Shi and Zhang Wen-Jing, who are both students in Department of Statistics and Finance, University of Science and Technology of China, for their valuable and creative ideas in stimulating discussions as well as conscientious work of computing.
文摘Though the Bǎcklund transformation on time-like surfaces with constant mean curvature surfaces in R^2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related integrable system cannot be avoided when the Bǎcklund transformation is used, For sake of this, in this article, some special work is done to reform the Bǎcklund transformation to a recursion formula, by which we can construct time-like surfaces with constant mean curvature form known ones just by quadrature procedure.
文摘We deal with the (2 + 1)-extension of classical Boussinesq system,which can reduce to several meaningful(1 + 1)-dimensional systems.By studying its Lax pair,we put forward invariances of Lax pair at first,then a recursionformula depending on an arbitrary function is derived.At last,some solutions of the (2 + 1)-extension of classicalBoussinesq system are digged out by using the formula.
文摘The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.
文摘The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.
基金Project supported by the National Natural Science Foundation of China (No. 10472102) and Postdoctoral Foundation of China (No.20040350712)
文摘The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of the numerical results by the present method is much higher than that by the traditional quadrature method.
基金Supported by the National Natural Science Foundation of China (10671176, 10771192, 70871103)
文摘In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|(i.e., the time of ruin, the surplus before ruin and the deficit at ruin) by the method of mass function of up-crossing zero points, as given by Liu and Zhao (2007). By using the same method, the recursive formula of supremum distribution is obtained. An example is included to illustrate the results of the model.
基金Supported by the NNSF of China(10001016) SF for the Prominent Youth of Henan Province
文摘The purpose of this paper is to define the generalized Euler numbers and the generalized Euler numbers of higher order, their recursion formula and some properties were established, accordingly Euler numbers and Euler numbers of higher order were extended.
基金National Basic Research Program of China Under Grant No. 2007CB714200National Natural Science Foundation of China Under Grant No. 90715038
文摘In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.
基金China Postdoctoral Science Foundation Under Grant No.20100480321National Basic Research Program of China Under Grant No. 2007CB714200
文摘In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.
基金supported by NSFC (11171101, 11271121)Doctoral Fund of Education Ministry of China (20104306110001)Scientific Research Fund of Hunan Provincial Education Department (12C0562)
文摘Given a new Double-Markov risk model DM = (μ, Q, v, H; Y, Z) and Double-Markov risk process U = {U(t), t 〉 0}. The ruin or survival problem is addressed. Equations which the survival probability satisfied and the formulas of calculating survival probability are obtained. Recursion formulas of calculating the survival probability and analytic expression of recursion items are obtained. The conclusions are expressed by Q matrix for a Markov chain and transition probabilities for another Markov Chain.
文摘From the basic properties of skein systems, we build a generalized tangle algebra (GTA). The elements of GTA are four basic tangles. There are three operations, which are connection, splicing and scalar multiplication. From GTA we derive two generalized recursion formulae (GRF) and prove the existence of a generalized skein relation which satisfies GRF. The obtained generalized skein relation epitomizes all generalizations from the Jones polynomial and thus forms a unified model. Two important topological parameters, twisting measure and loop values, appear explicitly in the expressions of the unified model, and this fact greatly simplifies the operations.
基金Supported by Program "Frontier Topics in Mathematical Physics"(KJCX3-SYW-S03)National Natural Science Foundation of China under Grant No.11035008
文摘The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The recursion formula is factorized completely.