期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
Sound event localization and detection based on deep learning
1
作者 ZHAO Dada DING Kai +2 位作者 QI Xiaogang CHEN Yu FENG Hailin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期294-301,共8页
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,... Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method. 展开更多
关键词 sound event localization and detection(SELD) deep learning convolutional recursive neural network(CRNN) channel attention mechanism
下载PDF
An Intrusion Detection System for SDN Using Machine Learning
2
作者 G.Logeswari S.Bose T.Anitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期867-880,共14页
Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network... Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network.On the other hand,these advantages create a more vulnerable environment with substantial risks,culminating in network difficulties,system paralysis,online banking frauds,and robberies.These issues have a significant detrimental impact on organizations,enterprises,and even economies.Accuracy,high performance,and real-time systems are necessary to achieve this goal.Using a SDN to extend intelligent machine learning methodologies in an Intrusion Detection System(IDS)has stimulated the interest of numerous research investigators over the last decade.In this paper,a novel HFS-LGBM IDS is proposed for SDN.First,the Hybrid Feature Selection algorithm consisting of two phases is applied to reduce the data dimension and to obtain an optimal feature subset.In thefirst phase,the Correlation based Feature Selection(CFS)algorithm is used to obtain the feature subset.The optimal feature set is obtained by applying the Random Forest Recursive Feature Elimination(RF-RFE)in the second phase.A LightGBM algorithm is then used to detect and classify different types of attacks.The experimental results based on NSL-KDD dataset show that the proposed system produces outstanding results compared to the existing methods in terms of accuracy,precision,recall and f-measure. 展开更多
关键词 Intrusion detection system light gradient boosting machine correlation based feature selection random forest recursive feature elimination software defined networks
下载PDF
基于多阶段递推数据分析的低压台区窃电检测方法 被引量:1
3
作者 孔祥玉 马玉莹 +1 位作者 赵鑫 梁博浩 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期5921-5933,I0007,共14页
窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进... 窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。 展开更多
关键词 低压台区 窃电检测 多阶段递推 特征相似性度量 支持向量机
下载PDF
高阶深度可分离无人机图像小目标检测算法 被引量:1
4
作者 郭伟 王珠颖 金海波 《计算机系统应用》 2024年第5期144-153,共10页
当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合CSPNet结构与ConvMixer网络,深度可分离卷积核,获取梯度结合信息... 当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合CSPNet结构与ConvMixer网络,深度可分离卷积核,获取梯度结合信息,并引入递归门控卷积C3模块,提升模型的高阶空间交互能力,增强网络对小目标的敏感度;其次,检测头采用两个头部进行解耦,分别输出特征图分类和位置信息,加快模型收敛速度;最后,使用边框损失函数EIoU,提高检测框精准度.在VisDrone2019数据集上的实验结果表明,该模型检测精度达到了35.1%,模型漏检率和误检率有明显下降,能够有效地应用于无人机图像小目标检测任务.在DOTA 1.0数据集和HRSID数据集上进行模型泛化能力测试,实验结果表明,该模型具有良好的鲁棒性. 展开更多
关键词 小目标检测 递归门控卷积 解耦头 无人机图像 YOLOv5
下载PDF
基于声信号递归Hilbert变换的轴承故障诊断研究
5
作者 郝旺身 李继康 +2 位作者 董辛旻 娄永威 徐平 《机床与液压》 北大核心 2024年第4期195-199,共5页
轴承缺陷检测与损伤程度检测一直是旋转机械领域内非常重视的问题,虽然目前针对振动信号的研究已经取得相当好的结果,但是对于难以安装振动传感器的情况,诊断效果仍需改进。针对强背景噪声下故障轴承产生的声音,提出一种基于递归Hilber... 轴承缺陷检测与损伤程度检测一直是旋转机械领域内非常重视的问题,虽然目前针对振动信号的研究已经取得相当好的结果,但是对于难以安装振动传感器的情况,诊断效果仍需改进。针对强背景噪声下故障轴承产生的声音,提出一种基于递归Hilbert变换和一维卷积神经网络的诊断方法来提取抽象特征并进行模式识别。卷积神经网络结构中引入了全局平均池化层来加速网络的运行。最后,通过数据集验证了所提方法的有效性,与其他常用分类方法进行对比,验证了该方法的优越性。结果表明:所提算法不仅能够准确识别轴承的损伤部位,而且能够准确区分部件的损伤程度。 展开更多
关键词 声学检测 损伤检测 递归Hilbert变换 深度学习 卷积神经网络
下载PDF
基于活动性检测动态估计噪声的心音降噪算法
6
作者 许春冬 辛鹏丽 +3 位作者 闵源 应冬文 周静 李海兵 《计算机工程与设计》 北大核心 2024年第1期236-243,共8页
针对基于小波分解和最优改进对数幅度谱估计的心音降噪算法存在噪声残留和心音失真的问题,提出一种基于心音活动性检测(HSAD)动态估计噪声的心音降噪算法。通过设计的HSAD判断当前心音帧是否为基础心音帧(FHS),根据判断结果分别采用改... 针对基于小波分解和最优改进对数幅度谱估计的心音降噪算法存在噪声残留和心音失真的问题,提出一种基于心音活动性检测(HSAD)动态估计噪声的心音降噪算法。通过设计的HSAD判断当前心音帧是否为基础心音帧(FHS),根据判断结果分别采用改进最小值控制递归平均(IMCRA)算法和递归平滑算法对噪声功率进行动态估计与更新,采用非因果先验信噪比,实现心音信号的降噪。实验结果表明,提出算法能更好在提升降噪性能的同时,降低FHS的失真。 展开更多
关键词 心音降噪 小波分解 心音活动性检测 改进的最小值控制递归平均 递归平滑 噪声功率估计 非因果先验信噪比
下载PDF
基于改进YOLOv7的红外安防目标检测 被引量:1
7
作者 韩瑶 骆晓玲 +1 位作者 程换新 沈静 《激光杂志》 CAS 北大核心 2024年第5期55-61,共7页
针对安防场景中红外图像对比度低、目标轮廓不明显导致目标检测效果差的问题,提出一种基于改进YOLOv7的红外安防目标检测算法。采用递归门控卷积改进主干网络,增强对输入图像高阶信息交互能力;使用SimAM注意力机制构建ELAN-S模块,降低... 针对安防场景中红外图像对比度低、目标轮廓不明显导致目标检测效果差的问题,提出一种基于改进YOLOv7的红外安防目标检测算法。采用递归门控卷积改进主干网络,增强对输入图像高阶信息交互能力;使用SimAM注意力机制构建ELAN-S模块,降低信息丢失率的同时减少网络参数;使用K-means++聚类算法优化锚盒尺寸,提高检测精度。对InfiRay公开数据集进行数据增强和模型验证实验,结果表明,提出的算法在保持较高检测速度前提下,平均精度均值达到了87.15%,相对于原YOLOv7网络与其他主流算法有明显提高,证明改进方法先进有效。 展开更多
关键词 目标检测 红外图像 YOLOv7 递归门控卷积 SimAM
下载PDF
基于BCUSUM的多参数变点估计
8
作者 王继梅 胡尧 《统计与决策》 北大核心 2024年第9期61-66,共6页
文章基于递归残差的逆序特征和隔离检测研究了回归模型多参数变点的检测方法。首先,构建带有变点的回归模型,考虑到多元正向CUSUM检验能防止协变量均值与偏移量正交时损失功效,但其变点检测效果并不理想的情况,引入修正的检验统计量BCU... 文章基于递归残差的逆序特征和隔离检测研究了回归模型多参数变点的检测方法。首先,构建带有变点的回归模型,考虑到多元正向CUSUM检验能防止协变量均值与偏移量正交时损失功效,但其变点检测效果并不理想的情况,引入修正的检验统计量BCUSUM。其次,结合快速高效的隔离检测技术,提出MCPDP算法用于估计变点数目及位置。最后,模拟结果表明,所提出的方法能较好地控制检验水平,有更高的功效;评价结果显示,MCPDP算法在变点估计性能方面表现较优;实例分析表明,交通流变点符合实际交通情况,验证了该方法的有效性,且所构建的模型可以作为交通参数确定性经验关系的一种修正。 展开更多
关键词 多参数变点 逆向累积和 隔离检测 递归残差
下载PDF
改进YOLOv5s算法的电动车头盔检测研究
9
作者 侯恩翔 张旭 +1 位作者 刘罡 张秀再 《国外电子测量技术》 2024年第3期168-176,共9页
针对电动车头盔佩戴检测存在遮挡、车辆密集以及一车多人的复杂场景下出现的漏检、误检问题,在YOLOv5s的基础上,提出了一种应用于电动车头盔佩戴检测的改进算法。设计了一种由递归门控卷积改进的GBC3模块,替换网络主干和特征融合层(feat... 针对电动车头盔佩戴检测存在遮挡、车辆密集以及一车多人的复杂场景下出现的漏检、误检问题,在YOLOv5s的基础上,提出了一种应用于电动车头盔佩戴检测的改进算法。设计了一种由递归门控卷积改进的GBC3模块,替换网络主干和特征融合层(feature pyramid networks,FPN)中的C3模块,加强邻间特征的空间信息交互,提高网络的特征提取和特征融合能力;其次在主干和特征融合网络添加无参注意力机制(SimAM),以调整特征图中不同区域的注意力权重,对重要目标施加更多关注;最后引入调整超参后的WIOU损失函数,优化预测框回归,提高模型的目标定位能力。在自制电动车头盔数据集上的实验结果表明,改进模型在仅增加较少参数的前提下,其平均精度均值(mAP)达到97.3%,较YOLOv5s提高了3.2%,并且检测速度为87.1 fps,改善了误检和漏检的问题,同时仍具有较高的实时性,更适用于电动车驾乘者的头盔佩戴检测。 展开更多
关键词 电动车头盔检测 递归门控卷积 空间交互 注意力机制
下载PDF
基于改进级联卷积神经网络的织物疵点检测
10
作者 李小庆 张俊杰 +2 位作者 杜小勤 梁晶 袁桦 《计算机与数字工程》 2024年第5期1557-1562,1568,共7页
为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方... 为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方法,同时引入复制粘贴以及混合的方式对样本进行扩充与增强;针对特征提取算法提取特征不精确的问题,对特征金字塔进行改进,通过加入可变形卷积、递归特征金字塔、可切换的空洞卷积、全局语义信息的方法扩大感受野、增强语义信息。实验结果验证了算法的有效性,该算法对天池雪浪制造数据集9种布匹疵点进行检测,检测是否具有瑕疵的准确率达到97%以上,疵点定位的平均检测精度为56.7%,样本检测效率为2.4 FPS。相对于基础模型定位精准度提升了10%以上,并且检测效果满足工业上的生产需求。 展开更多
关键词 织物疵点检测 级联卷积神经网络 数据增广 递归特征金字塔 可切换空洞卷积
下载PDF
基于多尺度融合和高阶交互的单目3D检测算法
11
作者 孙延康 王璇之 +2 位作者 封澳 谢玉阳 肖建 《计算机技术与发展》 2024年第10期38-45,共8页
三维目标检测是三维场景理解的一项基础性和挑战性的任务,基于单目视觉的方法可以作为基于立体或基于雷达方法的经济替代。该文提出了一种基于MonoDLE改进的单目3D检测算法,用于优化由尺寸形状与3D位置偏差产生的精度损失。首先,提出了... 三维目标检测是三维场景理解的一项基础性和挑战性的任务,基于单目视觉的方法可以作为基于立体或基于雷达方法的经济替代。该文提出了一种基于MonoDLE改进的单目3D检测算法,用于优化由尺寸形状与3D位置偏差产生的精度损失。首先,提出了一个通用的多尺度池化注意力模块用于聚合更精细的多尺度特征并且高效地联系上下文信息。其次,为了增强模型的高阶空间交互能力,还提出了由递归门控卷积和分组归一化构成的递归门控卷积块,用于替代基线架构上采样模块的卷积层,有效提升上采样模块的表征能力。在单目3D检测通用数据集KITTI上的实验表明:经过多尺度池化注意力模块提高网络聚合特征的能力后,在3D视角且交并比大于0.7的标准情况下,该算法的平均检测率指标AP 40从13.66提升到15.10;经过递归门控卷积块增强模型的高阶空间交互能力后,在3D视角且交并比大于0.7的标准情况下,该算法的平均检测率指标AP 40再次从15.10提升到15.53;在两个模块协同作用下,在鸟瞰图视角且交并比大于0.7的标准情况下,该算法的平均检测率指标AP 40同样从19.33提升到21.95。 展开更多
关键词 单目3D检测 特征金字塔池化 注意力机制 递归门控卷积 分组归一化
下载PDF
递归投影融合对比机制的少样本目标检测方法
12
作者 陈瀚 雷亮 +1 位作者 朱锦相 王冬 《计算机工程与设计》 北大核心 2024年第2期508-515,共8页
针对少样本场景中尺度混乱、特征关联性差导致检测不精准的问题,提出一种基于多尺度融合对比机制的检测算法。相比先前方法仅关注表层特征迁移,该方法深刻探讨基类与新类特征空间的潜在联系。通过多尺度递归投影增加特征关联性,利用对... 针对少样本场景中尺度混乱、特征关联性差导致检测不精准的问题,提出一种基于多尺度融合对比机制的检测算法。相比先前方法仅关注表层特征迁移,该方法深刻探讨基类与新类特征空间的潜在联系。通过多尺度递归投影增加特征关联性,利用对比机制充分挖掘基类空间和通道信息,最大化引导新类特征的提取、筛选以及匹配,取得显著性能提升。在Pascal VOC和MS COCO数据集实验中验证了该方法的优越性,为少样本目标检测研究提供了新的理论支撑和研究方向。 展开更多
关键词 目标检测 少样本学习 微调范式 多尺度 递归机制 特征投影融合 对比机制
下载PDF
多参数水质检测智能传感器信号处理及建模 被引量:1
13
作者 陈帅 《机械管理开发》 2024年第4期26-27,30,共3页
针对多参数水质检测中智能传感器易受到环境、噪声、光源等干扰因素的影响,提出一种结合递推平均滤波算法和小波变换算法的传感器信号处理方法.该方法利用递推平均滤波算法对传感器输入信号的周期性干扰因素进行预处理,并利用小波变换... 针对多参数水质检测中智能传感器易受到环境、噪声、光源等干扰因素的影响,提出一种结合递推平均滤波算法和小波变换算法的传感器信号处理方法.该方法利用递推平均滤波算法对传感器输入信号的周期性干扰因素进行预处理,并利用小波变换算法进一步减少传感器信号的噪声.小波变换算法能够通过伸缩和平移来细化采集信号,以此实现对时频的局部化处理,最终达到对高频部分进行时间细化、对低频部分进行频率细化的目的.实验结果显示,在同样的阈值条件下,降低噪声的数量越多,对噪声的抑制作用越显著.由此验证了所提方法的有效性. 展开更多
关键词 多参数水质检测 传感器信号处理 递推平均滤波算法 小波变换算法
下载PDF
基于神经网络的不确定性数据流异常检测系统设计
14
作者 向权舟 关宇洋 +2 位作者 江海 杨海峰 祝海峰 《电子设计工程》 2024年第12期81-85,共5页
受非线性变化数据影响,导致数据流异常检测结果不精准,为此设计了基于神经网络的不确定性数据流异常检测系统。采集时间窗口数据,计算离散值,将计算结果存入综合数据库。提取不确定性数据流异常特征,结合神经网络检测数据流异常情况。... 受非线性变化数据影响,导致数据流异常检测结果不精准,为此设计了基于神经网络的不确定性数据流异常检测系统。采集时间窗口数据,计算离散值,将计算结果存入综合数据库。提取不确定性数据流异常特征,结合神经网络检测数据流异常情况。构建原始数据流序列和不确定性数据流序列,并以此为基础构建检测模型。引入递推算法,结合Lasso回归分析方法剔除非线性变化数据,分析不确定性数据的异常特性,通过神经网络锁定异常数据流,获取检测结果。由实验结果可知,该系统可将数据拟合在理想值附近,且样本数据在实际值上下限范围内,能够获取精准的检测结果。 展开更多
关键词 神经网络 不确定性数据流 异常检测 Lasso回归 递推算法
下载PDF
基于集中式特征金字塔的交通标志识别
15
作者 李文举 刘子琼 +1 位作者 张干 崔柳 《计算机仿真》 2024年第8期118-126,共9页
针对目前交通标志识别技术中存在的畸变目标、小目标检测难等问题,提出一种基于集中式特征金字塔的交通标志识别算法。首先,使用集中式特征金字塔改进原始的特征融合网络,用轻量级多层感知机(MLP)来捕获全局远程依赖,通过可学习视觉中... 针对目前交通标志识别技术中存在的畸变目标、小目标检测难等问题,提出一种基于集中式特征金字塔的交通标志识别算法。首先,使用集中式特征金字塔改进原始的特征融合网络,用轻量级多层感知机(MLP)来捕获全局远程依赖,通过可学习视觉中心机制(LVC)来捕获输入图像的局部角区域,提高了对畸变目标以及小目标的检测精度;其次,使用递归门控卷积提取浅层特征图的高阶空间交互信息,改善对小目标的检测效果;最后,使用SIoU回归损失函数,引入角度损失,重新定义惩罚指标,减少总损失的自由度,防止预测框在训练时四处游荡,加快收敛速度,使定位更加精确。在TT100K数据集上平均检测精度为93.4%,和传统的YOLOv5n相比精度提升了3.5个百分点,帧处理速度达到94.34fps。 展开更多
关键词 集中式特征金字塔 递归门控卷积 交通标志识别 目标检测
下载PDF
基于改进YOLOv7模型的绝缘子缺陷检测研究
16
作者 张强 张兆江 +1 位作者 陈杭 李慧荣 《山西电力》 2024年第3期21-25,共5页
绝缘子缺陷检测占据电力巡检的主导地位,传统的电力巡检方法需要人工实地勘察,缺乏安全性和实效性。为此,提出了一种改进YOLOv7模型的绝缘子缺陷检测算法,以提高绝缘子缺陷检测的精度和速度。该算法在YOLOv7的基础上引入了HorNet递归门... 绝缘子缺陷检测占据电力巡检的主导地位,传统的电力巡检方法需要人工实地勘察,缺乏安全性和实效性。为此,提出了一种改进YOLOv7模型的绝缘子缺陷检测算法,以提高绝缘子缺陷检测的精度和速度。该算法在YOLOv7的基础上引入了HorNet递归门控卷积重构目标检测颈部网络,解决了基网络缺乏全局建模、长距离建模能力的问题;采用SIoU Loss作为损失函数进而提高模型的收敛速度。实验结果表明,与基网络相比,该方法平均精度提高了2.8%,总平均精度均值达到了95.8%,相对于原始模型提高了4.1%,检测速度提高了53.3%,能够满足实时检测的要求。 展开更多
关键词 缺陷检测 YOLOv7 递归门控卷积 SIoU损失
下载PDF
光伏板清扫机器人行走机构静力学分析
17
作者 韩留 《机械管理开发》 2024年第4期28-30,共3页
光伏板清扫机器人行走机构两侧结构对称,由行走同步带、同步带传动机构、辅助支撑轮机构和行走机构支撑架等组成,行走机构支撑架是行走机构的重要组成部分.运用SolidWorks对行走机构支撑架进行建模和简化,通过有限元分析软件ANSYS Workb... 光伏板清扫机器人行走机构两侧结构对称,由行走同步带、同步带传动机构、辅助支撑轮机构和行走机构支撑架等组成,行走机构支撑架是行走机构的重要组成部分.运用SolidWorks对行走机构支撑架进行建模和简化,通过有限元分析软件ANSYS Workbench对其进行静力学分析,计算出最大变形为0.04 mm、最大应力为31.12 MPa,能够满足使用设计要求,可为后续优化设计提供参考. 展开更多
关键词 行走机构 支撑架 静力学分析
下载PDF
RLS and LMS blind adaptive multi-user detection method and comparison in acoustic communication 被引量:7
18
作者 WANG Zhongqiu WANG Hongru MENG Qingming 《Instrumentation》 2015年第2期47-54,共8页
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s... RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication. 展开更多
关键词 recursive least squares least mean square method multi-user detection blind adaptive acoustic communication
下载PDF
改进YOLOv5的交通标志检测方法 被引量:10
19
作者 韦强 胡晓阳 赵虹鑫 《计算机工程与应用》 CSCD 北大核心 2023年第13期229-237,共9页
交通标志检测对自动驾驶和车辆安全具有重要意义,但交通标志受光照影响尺度变化较大,存在遮挡等情况导致模型检测精度较低,有误检、漏检等问题。基于YOLOv5目标检测算法,提出了一种改进的交通标志检测方法。该方法引入递归门控卷积、SOC... 交通标志检测对自动驾驶和车辆安全具有重要意义,但交通标志受光照影响尺度变化较大,存在遮挡等情况导致模型检测精度较低,有误检、漏检等问题。基于YOLOv5目标检测算法,提出了一种改进的交通标志检测方法。该方法引入递归门控卷积、SOCA注意力机制和回归损失函数,在TT100K和CCTSDB数据集上进行了大量实验。实验结果表明,改进的YOLOv5在TT100K数据集上平均准确率(mAP)提高了43.7个百分点,mAP@0.5:0.95提高了34.6个百分点,在CCTSDB数据集上平均准确率(mAP)提高了2个百分点,mAP@0.5:0.95提高了1个百分点。 展开更多
关键词 交通标志检测 递归门控卷积 注意力机制 回归损失函数
下载PDF
基于反馈机制与空洞卷积的道路小目标检测网络 被引量:5
20
作者 窦允冲 侯进 +1 位作者 曾雷鸣 陈子锐 《计算机工程》 CAS CSCD 北大核心 2023年第1期287-294,共8页
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Nec... 随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。 展开更多
关键词 小目标检测 YOLOv4算法 空洞卷积 反馈机制 递归特征金字塔
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部