In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expre...In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.展开更多
The Owen’s T function is presented in four new ways, one of them as a series similar to the Euler’s arctangent series divided by 2π, which is its majorant series. All possibilities enable numerically stable ...The Owen’s T function is presented in four new ways, one of them as a series similar to the Euler’s arctangent series divided by 2π, which is its majorant series. All possibilities enable numerically stable and fast convergent computation of the bivariate normal integral with simple recursion. When tested computation on a random sample of one million parameter triplets with uniformly distributed components and using double precision arithmetic, the maximum absolute error was 3.45 × 10<sup>-</sup><sup>16</sup>. In additional testing, focusing on cases with correlation coefficients close to one in absolute value, when the computation may be very sensitive to small rounding errors, the accuracy was retained. In rare potentially critical cases, a simple adjustment to the computation procedure was performed—one potentially critical computation was replaced with two equivalent non-critical ones. All new series are suitable for vector and high-precision computation, assuming they are supplemented with appropriate efficient and accurate computation of the arctangent and standard normal cumulative distribution functions. They are implemented by the R package Phi2rho, available on CRAN. Its functions allow vector arguments and are ready to work with the Rmpfr package, which enables the use of arbitrary precision instead of double precision numbers. A special test with up to 1024-bit precision computation is also presented.展开更多
The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era,...The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.展开更多
基金The first author,Mrs.Yan Hong,was partially supported by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007)by the Science Research Fund of Inner Mongolia University for Nationalities(Grant No.NMDBY15019)by the Foun-dation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZY19157 and NJZY20119)in China。
文摘In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.
文摘The Owen’s T function is presented in four new ways, one of them as a series similar to the Euler’s arctangent series divided by 2π, which is its majorant series. All possibilities enable numerically stable and fast convergent computation of the bivariate normal integral with simple recursion. When tested computation on a random sample of one million parameter triplets with uniformly distributed components and using double precision arithmetic, the maximum absolute error was 3.45 × 10<sup>-</sup><sup>16</sup>. In additional testing, focusing on cases with correlation coefficients close to one in absolute value, when the computation may be very sensitive to small rounding errors, the accuracy was retained. In rare potentially critical cases, a simple adjustment to the computation procedure was performed—one potentially critical computation was replaced with two equivalent non-critical ones. All new series are suitable for vector and high-precision computation, assuming they are supplemented with appropriate efficient and accurate computation of the arctangent and standard normal cumulative distribution functions. They are implemented by the R package Phi2rho, available on CRAN. Its functions allow vector arguments and are ready to work with the Rmpfr package, which enables the use of arbitrary precision instead of double precision numbers. A special test with up to 1024-bit precision computation is also presented.
文摘The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.