期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recursive recurrent neural network:A novel model for manipulator control with different levels of physical constraints 被引量:3
1
作者 Zhan Li Shuai Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期622-634,共13页
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinemati... Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method. 展开更多
关键词 dynamic neural networks recursive computation robotic manipulator
下载PDF
Image Deraining for UAV Using Split Attention Based Recursive Network
2
作者 FENG Yidan DENG Sen WEI Mingqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期539-549,共11页
Images captured in rainy days suffer from noticeable degradation of scene visibility.Unmanned aerial vehicles(UAVs),as important outdoor image acquisition systems,demand a proper rain removal algorithm to improve visu... Images captured in rainy days suffer from noticeable degradation of scene visibility.Unmanned aerial vehicles(UAVs),as important outdoor image acquisition systems,demand a proper rain removal algorithm to improve visual perception quality of captured images as well as the performance of many subsequent computer vision applications.To deal with rain streaks of different sizes and directions,this paper proposes to employ convolutional kernels of different sizes in a multi-path structure.Split attention is leveraged to enable communication across multiscale paths at feature level,which allows adaptive receptive field to tackle complex situations.We incorporate the multi-path convolution and the split attention operation into the basic residual block without increasing the channels of feature maps.Moreover,every block in our network is unfolded four times to compress the network volume without sacrificing the deraining performance.The performance on various benchmark datasets demonstrates that our method outperforms state-of-the-art deraining algorithms in both numerical and qualitative comparisons. 展开更多
关键词 unmanned aerial vehicle(UAV) deep neural network image deraining recursive computation split attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部