Recycled powder(RP)is produced as a by-product during the process of recycling construction and demolition(C&D)wastes,presenting a low additional value.Using RP-based solidifying material can not only improve its ...Recycled powder(RP)is produced as a by-product during the process of recycling construction and demolition(C&D)wastes,presenting a low additional value.Using RP-based solidifying material can not only improve its utilization efficiency,but also reduce the cost of commercial solidifying materials.To date,this is the best solidifying material utilized to dispose the original waterworks sludge(OWS)with high moisture contents(60%),and the product could be used to fabricate non-fired bricks.This has become a new environment-friendly technology of“using waste to treat waste”.In this paper,the influence of different particle sizes and dosages of RP on the prepared solidifying material was studied.Besides,unconfined compression strength(UCS),volume stability,chemical composition,and heat of hydration,pore structure of the solidifying material were characterized.Then,non-fired bricks were prepared by using the solidifying material,recycled aggregate,and original waterworks sludge.The UCS and softing coefficient(SC)of the non-fired bricks were evaluated.As a result,the 28-day UCS of the solidifying material with optimal(M30)was 35.40 MPa,which could reach 84.37%of Portland cement(PC).The addition of RP increased the volume stability of the solidifying material.The addition of a large amount of RP reduced the heat flux and cumulative heat release of the solidifying material,while its porosity increased.The UCS of non-fired brick(NF20)in 28 days was 15.19 MPa and the SC after 28 days was 78.35%.In conclusion,the preparation of solidifying material using RP could be a promising approach and has a great potential in disposal of original waterworks sludge.展开更多
Thermal energy storage recycled powder mortar(TESRM)was developed in this study by incorporating paraffin/recycled brick powder(paraffin/BP)composite phase change materials(PCM).Fourier transform infrared and thermogr...Thermal energy storage recycled powder mortar(TESRM)was developed in this study by incorporating paraffin/recycled brick powder(paraffin/BP)composite phase change materials(PCM).Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability.The onset melting temperature and latent heat of the composite PCM were 46.49°C and 30.1 J·g−1.The fresh mortar properties and hardened properties were also investigated in this study.Paraffin/BP composite PCM with replacement ratio of 0%,10%,20%,and 30%by weight of cement were studied.The results showed that the static and dynamic yield stresses of TESRM were 699.4%and 172.9%higher than those of normal mortar,respectively.The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages,and could also reduce the dry shrinkage of mortar.The dry shrinkage of TESRM had a maximum reduction about 26.15%at 120 d.The thermal properties of TESRM were better than those of normal mortar.The thermal conductivity of TESRM was 36.3%less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.展开更多
基金This work was supported by the Jiangsu Provincial Science and Technology Department’s Social Development-Major Science and Technology Demonstration Project(Grant No.BE2018697)the Demonstration Engineering Technology Research Center of Suqian Science and Technology Bureau(Grant No.M201912)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recycled powder(RP)is produced as a by-product during the process of recycling construction and demolition(C&D)wastes,presenting a low additional value.Using RP-based solidifying material can not only improve its utilization efficiency,but also reduce the cost of commercial solidifying materials.To date,this is the best solidifying material utilized to dispose the original waterworks sludge(OWS)with high moisture contents(60%),and the product could be used to fabricate non-fired bricks.This has become a new environment-friendly technology of“using waste to treat waste”.In this paper,the influence of different particle sizes and dosages of RP on the prepared solidifying material was studied.Besides,unconfined compression strength(UCS),volume stability,chemical composition,and heat of hydration,pore structure of the solidifying material were characterized.Then,non-fired bricks were prepared by using the solidifying material,recycled aggregate,and original waterworks sludge.The UCS and softing coefficient(SC)of the non-fired bricks were evaluated.As a result,the 28-day UCS of the solidifying material with optimal(M30)was 35.40 MPa,which could reach 84.37%of Portland cement(PC).The addition of RP increased the volume stability of the solidifying material.The addition of a large amount of RP reduced the heat flux and cumulative heat release of the solidifying material,while its porosity increased.The UCS of non-fired brick(NF20)in 28 days was 15.19 MPa and the SC after 28 days was 78.35%.In conclusion,the preparation of solidifying material using RP could be a promising approach and has a great potential in disposal of original waterworks sludge.
基金The financial support from the National Natural Science Foundation of China(Grant No.52078358)is gratefully appreciatedNational Key R&D Program of China(No.2022YFE0198300)the GCCRN Core Project 11 are highly acknowledged.
文摘Thermal energy storage recycled powder mortar(TESRM)was developed in this study by incorporating paraffin/recycled brick powder(paraffin/BP)composite phase change materials(PCM).Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability.The onset melting temperature and latent heat of the composite PCM were 46.49°C and 30.1 J·g−1.The fresh mortar properties and hardened properties were also investigated in this study.Paraffin/BP composite PCM with replacement ratio of 0%,10%,20%,and 30%by weight of cement were studied.The results showed that the static and dynamic yield stresses of TESRM were 699.4%and 172.9%higher than those of normal mortar,respectively.The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages,and could also reduce the dry shrinkage of mortar.The dry shrinkage of TESRM had a maximum reduction about 26.15%at 120 d.The thermal properties of TESRM were better than those of normal mortar.The thermal conductivity of TESRM was 36.3%less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.