期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid
1
作者 Aline Ferreira Knihs Larissa Klen Aragão +2 位作者 Miguel Angelo Granato Andrea Cristiane Krause Bierhalz Rita de Cassia Siqueira Curto Valle 《Journal of Renewable Materials》 EI CAS 2024年第9期1557-1571,共15页
The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study foc... The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry. 展开更多
关键词 Reactive dyed cotton waste reactive discoloration ionic liquid dissolution and regeneration recycling and reusing
下载PDF
NaOH/Urea Swelling Treatment and Hydrothermal Degradation of Waste Cotton Fiber 被引量:2
2
作者 Lixia Gao Sheng Shi +3 位作者 Wensheng Hou Shuhua Wang Zhifeng Yan Chao Ge 《Journal of Renewable Materials》 SCIE EI 2020年第6期703-713,共11页
In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.T... In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution,and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber.The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample.Moreover,the cotton fiber presented both a convoluted structure and a coarser surface,XRD results suggested that the crystallinity degree of cellulose decreased dramatically,more cellulose II appeared,and the hydrogen bond is broken.Among the different pretreatment conditions,the pretreatment effect was the best when the reaction temperature was 0°C,the solid-liquid ratio was 2:50,and the NaOH/urea ratio was 7:12.The hydrolysis experiments of pretreated and unpretreated cotton fibers showed that when the hydrothermal temperature was 230°C,the heat preservation was 2 h,and the hydrochloric acid concentration was 5 wt.%,the glucose yield reached 29.99%.H+could catalyze the hydrolysis of cotton fiber more effectively due to damage to crystal structure and hydrogen bonds. 展开更多
关键词 Waste cotton fibers NaOH/urea PRETREATMENT hydrolyze recycling and reusing
下载PDF
Development of Reproducing Alumina-Magnesia-Carbon Bricks 被引量:3
3
作者 LI Xinjian TANG Kun LIU Zhongjiang WANG Yubin 《China's Refractories》 CAS 2007年第3期22-26,共5页
The reproducing alumina-magnesia-carbon bricks were prepared with the dumped bricks as starting materials. The bulk density, apparent porosity, crushing strength, modolus of rupture and slag resistance of the specimen... The reproducing alumina-magnesia-carbon bricks were prepared with the dumped bricks as starting materials. The bulk density, apparent porosity, crushing strength, modolus of rupture and slag resistance of the specimen were analyzed. The results show that the used refractories can be reused and recycled by the right method. The reproducing alumina-magnesia-carbon bricks with better abilities were prepared. 展开更多
关键词 Reproducing alumina-magnesia-carbon brick recycling and reusing Bulk density Modulus of rupture Slag resistance
下载PDF
Review on the Estimating the Effective Way for Managing the Produced Water: Case Study
4
作者 Mohamed A. Kassab Ali E. Abbas +3 位作者 Iman Elgamal Basem M. Shawky Mahmoud F. Mubarak R. Hosny 《Open Journal of Modern Hydrology》 2021年第2期19-37,共19页
Water manufactured is the primary waste source in the oil and gas industry. Because of the rising amount of waste worldwide, the environmental effect of wastewater has become a primary environmental concern in recent ... Water manufactured is the primary waste source in the oil and gas industry. Because of the rising amount of waste worldwide, the environmental effect of wastewater has become a primary environmental concern in recent years. The vast amounts involved have resulted in considerable costs to the industry for handling produced water. This research explains the wide variety of choices for water management. This research’s first phase was water minimization techniques, consisting of three different applications made in three different wells (Well 1, Well 2 and Well 3) and water recycling and reuse by two techniques. In Well 1, Mechanical shut-off technique was applied using through tubing bridge plug and 5 m cement dumped above it to isolate the watered out zone;as per water oil ration plot the water cut is decreased from 100% to 4% and the production is increased from 0 to 400 bcpd. In Well 2, Chemical shut-off technique using a polymer called Brightwater has been used to block channeling through high permeability intervals after PLT log detected it, and the result was brilliant, the water cut decreased from 60% to 25%, also the oil production increase from 500 to 3000 bopd. In Well 3, downhole separator installed in it using workover (unfortunately, this technique is not applied in middle east till the moment so this application is taken from an oil field in Canada)and the result was perfect, the water cut decreased from 70% to 28%, also the oil production increase from 44 to 100 bopd. This study tried to clarify and compare the most widely used water management techniques using one of the Western Desert (W.D.) (enhanced for oil recovery, constructed wetland). 展开更多
关键词 Produced Water Water Production Problem Management Techniques Water Minimization Techniques recycling and reusing Technologies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部