A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby so...A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby soil and its P availability Soil samples were taken from different treatments at rice harvesting stage andanalysed. The isothermal adsorption of P by the samples fitted very well with Langmuir equation, and hence,the parameters in the equation, i.e., maximum adsoaption (qm), constant related to bonding energy (k) andtheir product (k x qm) could be used as a comprehensive index to characterize the potential P adsorptivityof the soil.Organo-inorganic fertilization and organic manuring conld decrease qm and k, while mineral P appli-cation had little effect on them. The isothermal desorption of P was significantly correlated with initiallyadded and isothermally adsorbed P. Part of P added was fixed, which represented the P fixation capacityof soil, and organic manuring could obviously lower the P fixation. The content of soil available P had asignificant negative correlation with qm, k and fixed P. It is concluded that organic manure could increase theP availability of paddy soil derived from red earth by decreasing qm, k, maximum buffering capacity (MBC=k x qm) and fixation capacity.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expan...Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).展开更多
The effects of La on some hydrolytic enzyme activities in red soil were studied in incubation and pot culture experiments. In the incubation experiment, La slightly stimulates the activities of urease and acidic phosp...The effects of La on some hydrolytic enzyme activities in red soil were studied in incubation and pot culture experiments. In the incubation experiment, La slightly stimulates the activities of urease and acidic phosphatase in soil and strongly stimulates sucrase activity in soil. In the pot culture experiment, La stimulates the activities of urease, acidic phosphatase and sucrase to different degrees. The stimulative effects of rare earth elements (REE) on hydrolytic enzyme activities in soil may result in increasing yield of crops.展开更多
The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation...The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation. The results show that with increasing amount of the added La, the proportion of exchangeable La in soils increases and there is more exchangeable La in red soil than in paddy soil. When the concentration of La is more than 600 mg(.)kg(-1) the proportion of exchangeable La almost remains constant. When the concentration of La is less than 1200 mg(.)kg(-1) there is no significant effect on CEC in red soil. But when the concentration of La is more than 1200 mg(.)kg(-1,) it has significant effect on CEC in paddy soil. The application of La resulted in increasing exchangeable aluminum, Ca and Mg in soil solution, and decreasing exchangeable Ca and Mg retained in soils. But when the concentration of La is less than 150 mg(.)kg(-1), it has no significant influence on CEC, exchangeable Ca and Mg, and exchangeable acidity in red soil and paddy soil.展开更多
The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of ric...The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.展开更多
The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and ...The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and P transformation while its high concentration has inhibitory effects, and the inhibition is strengthened with increasing concentration of La. La has strongly inhibitory effect on soil phenol decomposition and the inhibition is strengthened with increasing concentration of La. When the incubation time is prolonged, the inhibitory effect of La on soil nitrification and phenol decomposition tends to decrease.展开更多
文摘A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby soil and its P availability Soil samples were taken from different treatments at rice harvesting stage andanalysed. The isothermal adsorption of P by the samples fitted very well with Langmuir equation, and hence,the parameters in the equation, i.e., maximum adsoaption (qm), constant related to bonding energy (k) andtheir product (k x qm) could be used as a comprehensive index to characterize the potential P adsorptivityof the soil.Organo-inorganic fertilization and organic manuring conld decrease qm and k, while mineral P appli-cation had little effect on them. The isothermal desorption of P was significantly correlated with initiallyadded and isothermally adsorbed P. Part of P added was fixed, which represented the P fixation capacityof soil, and organic manuring could obviously lower the P fixation. The content of soil available P had asignificant negative correlation with qm, k and fixed P. It is concluded that organic manure could increase theP availability of paddy soil derived from red earth by decreasing qm, k, maximum buffering capacity (MBC=k x qm) and fixation capacity.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.
基金supported by the Special Fund for Agroscientific Research in the Public Interest (201203030 and 201003016)the National Basic Research Program of China (973 Program, 2011CB100501-S06)the National Natural Science Foundation of China (41301269)
文摘Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).
文摘The effects of La on some hydrolytic enzyme activities in red soil were studied in incubation and pot culture experiments. In the incubation experiment, La slightly stimulates the activities of urease and acidic phosphatase in soil and strongly stimulates sucrase activity in soil. In the pot culture experiment, La stimulates the activities of urease, acidic phosphatase and sucrase to different degrees. The stimulative effects of rare earth elements (REE) on hydrolytic enzyme activities in soil may result in increasing yield of crops.
文摘The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation. The results show that with increasing amount of the added La, the proportion of exchangeable La in soils increases and there is more exchangeable La in red soil than in paddy soil. When the concentration of La is more than 600 mg(.)kg(-1) the proportion of exchangeable La almost remains constant. When the concentration of La is less than 1200 mg(.)kg(-1) there is no significant effect on CEC in red soil. But when the concentration of La is more than 1200 mg(.)kg(-1,) it has significant effect on CEC in paddy soil. The application of La resulted in increasing exchangeable aluminum, Ca and Mg in soil solution, and decreasing exchangeable Ca and Mg retained in soils. But when the concentration of La is less than 150 mg(.)kg(-1), it has no significant influence on CEC, exchangeable Ca and Mg, and exchangeable acidity in red soil and paddy soil.
文摘The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.
文摘The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and P transformation while its high concentration has inhibitory effects, and the inhibition is strengthened with increasing concentration of La. La has strongly inhibitory effect on soil phenol decomposition and the inhibition is strengthened with increasing concentration of La. When the incubation time is prolonged, the inhibitory effect of La on soil nitrification and phenol decomposition tends to decrease.