Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil...Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil will be damaged, resulting in higher viscosity, higher water retention rate and lower air permeability of the soil. The germination rate of Chinese pine( Pinus tabulacformic Carr. ) seeds sowed in soil treated with sulphuric acid(H 2SO 4) decreased compared to that for untreated soil. The direct cause was the large amount of Al ions leached out because of low pH values(≥3.5). The added acid decreased the soil aggregation and increased the number of micro aggregates(under 250 μm in diameter). Such changes increased the soil's viscosity, which tied the pine needles to the soil after the seeds had germinated and prevented the seedlings from fully developing.展开更多
Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this ...Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this study, the data of BSPs and exchangeable H+, Al3+, Ca2+, Mg2+, K+ and Na+ of 109 and 45 horizon samples of 50 and 28 soil species in red soil and yellow soil groups in the Database of Chinese Soil Species were used to explore further the characteristics of BSPs and exchangeable cations as well as the correlation between BSPs and exchangeable cations. The results showed that the concentrations of exchangeable cations in both red soil and yellow soil groups were in an order of Al3+ (4.55 ± 1.47 and 4.22 ± 1.2 cmol(+)/kg) > Ca2+ (0.32 ± 0.21 and 0.36 ± 0.24 cmol(+)/kg) > H+ (0.23 ± 0.13 and 0.19 ± 0.10 cmol(+)/kg) > K+ (0.16 ± 0.09 and 0.16 ± 0.11 cmol(+)/kg) > Mg2+ (0.13 ± 0.09 and 0.11 ± 0.08 cmol(+)/kg) > Na+ (0.08 ± 0.06 and 0.11 ± 0.06 cmol(+)/kg). For red soil group, Al3+ concentration was significantly higher than those of other exchangeable cations, Ca2+ and H+ concentrations were significantly higher than those of K+, Mg2+ and Na+;while for yellow soil group, Ca2+, H+ and K+ concentrations were significantly higher than those of Mg2+ and K+. BSP of red soil group was codetermined by Ca2+, Al3+, Mg2+ and Na+, with the contributions of 33.81%, 19.82% and 14.49%, respectively;while BSP of yellow soil group was codetermined by Al3+, Ca2+, Mg2+, K+ and Na+, with the contributions of 24.91%, 21.55%, 19.91% and 14.21%, respectively. A higher concentration of exchangeable cation does not mean the higher importance of the cation to soil BSP.展开更多
文摘Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil will be damaged, resulting in higher viscosity, higher water retention rate and lower air permeability of the soil. The germination rate of Chinese pine( Pinus tabulacformic Carr. ) seeds sowed in soil treated with sulphuric acid(H 2SO 4) decreased compared to that for untreated soil. The direct cause was the large amount of Al ions leached out because of low pH values(≥3.5). The added acid decreased the soil aggregation and increased the number of micro aggregates(under 250 μm in diameter). Such changes increased the soil's viscosity, which tied the pine needles to the soil after the seeds had germinated and prevented the seedlings from fully developing.
文摘Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this study, the data of BSPs and exchangeable H+, Al3+, Ca2+, Mg2+, K+ and Na+ of 109 and 45 horizon samples of 50 and 28 soil species in red soil and yellow soil groups in the Database of Chinese Soil Species were used to explore further the characteristics of BSPs and exchangeable cations as well as the correlation between BSPs and exchangeable cations. The results showed that the concentrations of exchangeable cations in both red soil and yellow soil groups were in an order of Al3+ (4.55 ± 1.47 and 4.22 ± 1.2 cmol(+)/kg) > Ca2+ (0.32 ± 0.21 and 0.36 ± 0.24 cmol(+)/kg) > H+ (0.23 ± 0.13 and 0.19 ± 0.10 cmol(+)/kg) > K+ (0.16 ± 0.09 and 0.16 ± 0.11 cmol(+)/kg) > Mg2+ (0.13 ± 0.09 and 0.11 ± 0.08 cmol(+)/kg) > Na+ (0.08 ± 0.06 and 0.11 ± 0.06 cmol(+)/kg). For red soil group, Al3+ concentration was significantly higher than those of other exchangeable cations, Ca2+ and H+ concentrations were significantly higher than those of K+, Mg2+ and Na+;while for yellow soil group, Ca2+, H+ and K+ concentrations were significantly higher than those of Mg2+ and K+. BSP of red soil group was codetermined by Ca2+, Al3+, Mg2+ and Na+, with the contributions of 33.81%, 19.82% and 14.49%, respectively;while BSP of yellow soil group was codetermined by Al3+, Ca2+, Mg2+, K+ and Na+, with the contributions of 24.91%, 21.55%, 19.91% and 14.21%, respectively. A higher concentration of exchangeable cation does not mean the higher importance of the cation to soil BSP.