This paper studies the variation of runoff of Red River Basin and discusses the influence of"corridor-barrier"functions of valleys and mountains on variation of runoff by using GIS and statistic methods based on the...This paper studies the variation of runoff of Red River Basin and discusses the influence of"corridor-barrier"functions of valleys and mountains on variation of runoff by using GIS and statistic methods based on the monthly precipitation,temperature and evaporation data from 1960 to 2000 at 32 meteorological stations in Red River Basin,and the annual runoff data of Yuanjiang River,Lixian River and Panlong River from 1956 to 2000.The results show out:(1)Under the effect of"corridor-barrier"functions of valleys and mountains in Red River Basin,the patterns of annual precipitation and runoff depth distribution in spatial change a NW-SE direction,which is similar with the trend of the Red River valley and Ailao mountains.(2)In the long temporal scale averaged over years,the most obvious effects of the"corridor-barrier"functions is on runoff variation,and the second is on the precipitation, but not obvious on the temperature.(3)Under the superposed effect of climate changes and the"corridor-barrier"functions of valleys and mountains in Red River Basin,the difference of runoff variation is obvious in the east-west direction:the runoff variation of Yuanjiang River along the Red River Fault present an ascending trend,but the Lixian River on the west side of the Fault and the Panlong River on the east present a descending trend;the annual runoff in Yuanjiang River and Panlong River had a quasi-5a periods,and Panlong River had a quasi-8a periods;the runoff variation are quite inconsistent in different periods among the three river basins.展开更多
This paper explores the methodology for compiling the torrent hazard and risk zonation map by means of GIS technique for the Red River Basin in Yunnan province of China, where is prone to torrent. Based on a 1:250,00...This paper explores the methodology for compiling the torrent hazard and risk zonation map by means of GIS technique for the Red River Basin in Yunnan province of China, where is prone to torrent. Based on a 1:250,000 scale digital map, six factors including slope angle, rainstorm days, buffer of river channels, maximum runoff discharge of standard area, debris flow distribution density and flood disaster history were analyzed and superimposed to create the torrent risk evaluation map. Population density, farmland percentage, house property, and GDP as indexes accounting for torrent hazards were analyzed in terms of vulnerability mapping. Torrent risk zonation by means of GIS was overlaid on the two data layers of hazard and vulnerability. Then each grid unit with a resolution of 500 m- 500 m was divided into four categories of the risk: extremely high, high, moderate and low. Finally the same level risk was combined into a confirmed zone, which represents torrent risk of the study area. The risk evaluation result in the upper Red River Basin shows that the extremely high risk area of 13,150 km^2 takes up 17.9% of the total inundated area, the high risk area of 33,783 km^2 is 45.9%, the moderate risk area of 18,563 km^2 is 25.2% and the low risk area of 8115 km^2 is 11.0%.展开更多
Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that ha...Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.展开更多
The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system...The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.展开更多
[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framewo...[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framework of 'pressure-state-response' model, and index information of ecological security assessment was extracted by using RS and GIS technology; afterwards, the ecological security of Red River basin was divided into five grades according to ecological security index, and the distribution and characteristics of ecological security at various levels were analyzed; finally, the measures to maintain the ecological security of Red River basin were put forward on the basis of problems in ecological security. [Result] Most areas of Red River basin in Guangxi were in generally safe state, especially Lingyun County, Fengshan County, Du'an County, Dahua County, Shanglin County, Binyang County, Guiping City, etc., and the area accounted for 74.25% of total area; next came safer state (12.74%), the regions in the two states above were the most important environmental areas of Red River basin. The ecological security problems of Red River basin were mainly related to fragile ecological environment, lagging economic development, rapid population growth, excessive development and utilization of natural resources and so forth. [Conclusion] The research could provide scientific references for the rational development and utilization of land resources, protection and construction of ecological environment in Red River basin.展开更多
Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conserva...Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.展开更多
南海西北陆缘构造演化极其复杂,受到红河断裂、海南地幔柱和南海形成演化等多种因素的控制。莺歌海盆地位于南海西北部,发育了巨厚的新生代沉积物,详细记录了南海西北陆缘新生代的演化历史。但是莺歌海盆地新生代以来主要受到何种构造...南海西北陆缘构造演化极其复杂,受到红河断裂、海南地幔柱和南海形成演化等多种因素的控制。莺歌海盆地位于南海西北部,发育了巨厚的新生代沉积物,详细记录了南海西北陆缘新生代的演化历史。但是莺歌海盆地新生代以来主要受到何种构造因素的控制目前还不太清楚。本文在莺歌海盆地较为均匀地选择了7口钻井和23口模拟井,通过空盆构造沉降方法重建了莺歌海盆地的构造沉降量、构造沉降速率和沉积速率,同时运用重力反演方法模拟了莺歌海盆地深部地壳结构,并结合前人研究成果进行了综合分析。结果发现莺歌海盆地在裂陷期(45-23 Ma BP),盆地北部和中部沉降速率较大,南部沉降速率较小;在裂后期(23-0 Ma BP),盆地北部和中部沉降速率存在两期“台阶式”上升,分别为23-11.7 Ma BP和11.7 Ma BP至今,北部裂后期构造沉降速率最大可达80 m/Ma,中部最大可达110 m/Ma;南部地堑和隆起裂后期分别在11.7-5.7 Ma BP和15.9-11.7 Ma BP构造沉降速率最大可达70 m/Ma。莺歌海盆地新生代整体上表现为沉降速率与沉积速率变化基本一致,说明构造沉降对沉积速率具有显著的控制作用。重力反演发现莺歌海盆地可能存在下地壳高密度异常体,结合盆地沉积物内部钻遇玄武岩,我们推测下地壳高密度异常体为基性侵入体。通过与南海周边其他沉积盆地沉降速率对比发现,几乎所有盆地都在中中新世-晚中新世(15.9-11.7 Ma BP)发生了加速沉降事件,我们认为这可能跟南海海盆停止扩张导致大陆边缘次生地幔对流消失有关。莺歌海盆地5.7 Ma BP至今的加速沉降则可能与红河断裂右旋走滑活动有关。展开更多
基金National Key Project for Basic Research of China,No.2003CB415105
文摘This paper studies the variation of runoff of Red River Basin and discusses the influence of"corridor-barrier"functions of valleys and mountains on variation of runoff by using GIS and statistic methods based on the monthly precipitation,temperature and evaporation data from 1960 to 2000 at 32 meteorological stations in Red River Basin,and the annual runoff data of Yuanjiang River,Lixian River and Panlong River from 1956 to 2000.The results show out:(1)Under the effect of"corridor-barrier"functions of valleys and mountains in Red River Basin,the patterns of annual precipitation and runoff depth distribution in spatial change a NW-SE direction,which is similar with the trend of the Red River valley and Ailao mountains.(2)In the long temporal scale averaged over years,the most obvious effects of the"corridor-barrier"functions is on runoff variation,and the second is on the precipitation, but not obvious on the temperature.(3)Under the superposed effect of climate changes and the"corridor-barrier"functions of valleys and mountains in Red River Basin,the difference of runoff variation is obvious in the east-west direction:the runoff variation of Yuanjiang River along the Red River Fault present an ascending trend,but the Lixian River on the west side of the Fault and the Panlong River on the east present a descending trend;the annual runoff in Yuanjiang River and Panlong River had a quasi-5a periods,and Panlong River had a quasi-8a periods;the runoff variation are quite inconsistent in different periods among the three river basins.
基金National Natural Science Foundation of China, No.40371018
文摘This paper explores the methodology for compiling the torrent hazard and risk zonation map by means of GIS technique for the Red River Basin in Yunnan province of China, where is prone to torrent. Based on a 1:250,000 scale digital map, six factors including slope angle, rainstorm days, buffer of river channels, maximum runoff discharge of standard area, debris flow distribution density and flood disaster history were analyzed and superimposed to create the torrent risk evaluation map. Population density, farmland percentage, house property, and GDP as indexes accounting for torrent hazards were analyzed in terms of vulnerability mapping. Torrent risk zonation by means of GIS was overlaid on the two data layers of hazard and vulnerability. Then each grid unit with a resolution of 500 m- 500 m was divided into four categories of the risk: extremely high, high, moderate and low. Finally the same level risk was combined into a confirmed zone, which represents torrent risk of the study area. The risk evaluation result in the upper Red River Basin shows that the extremely high risk area of 13,150 km^2 takes up 17.9% of the total inundated area, the high risk area of 33,783 km^2 is 45.9%, the moderate risk area of 18,563 km^2 is 25.2% and the low risk area of 8115 km^2 is 11.0%.
文摘Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.
文摘The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.
基金Supported by Natural Science Foundation of Guangxi, China (0679026)
文摘[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framework of 'pressure-state-response' model, and index information of ecological security assessment was extracted by using RS and GIS technology; afterwards, the ecological security of Red River basin was divided into five grades according to ecological security index, and the distribution and characteristics of ecological security at various levels were analyzed; finally, the measures to maintain the ecological security of Red River basin were put forward on the basis of problems in ecological security. [Result] Most areas of Red River basin in Guangxi were in generally safe state, especially Lingyun County, Fengshan County, Du'an County, Dahua County, Shanglin County, Binyang County, Guiping City, etc., and the area accounted for 74.25% of total area; next came safer state (12.74%), the regions in the two states above were the most important environmental areas of Red River basin. The ecological security problems of Red River basin were mainly related to fragile ecological environment, lagging economic development, rapid population growth, excessive development and utilization of natural resources and so forth. [Conclusion] The research could provide scientific references for the rational development and utilization of land resources, protection and construction of ecological environment in Red River basin.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0600401)the Key Research Program of Frontier Sciences from Chinese Academy of Sciences+1 种基金Fundamental Research Funds in Heilongjiang Provincial Universities(No.135209252,135309359)the Philosophy and Social Sciences Research Plan of Heilongjiang Province(No.16JLC01)
文摘Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.
文摘南海西北陆缘构造演化极其复杂,受到红河断裂、海南地幔柱和南海形成演化等多种因素的控制。莺歌海盆地位于南海西北部,发育了巨厚的新生代沉积物,详细记录了南海西北陆缘新生代的演化历史。但是莺歌海盆地新生代以来主要受到何种构造因素的控制目前还不太清楚。本文在莺歌海盆地较为均匀地选择了7口钻井和23口模拟井,通过空盆构造沉降方法重建了莺歌海盆地的构造沉降量、构造沉降速率和沉积速率,同时运用重力反演方法模拟了莺歌海盆地深部地壳结构,并结合前人研究成果进行了综合分析。结果发现莺歌海盆地在裂陷期(45-23 Ma BP),盆地北部和中部沉降速率较大,南部沉降速率较小;在裂后期(23-0 Ma BP),盆地北部和中部沉降速率存在两期“台阶式”上升,分别为23-11.7 Ma BP和11.7 Ma BP至今,北部裂后期构造沉降速率最大可达80 m/Ma,中部最大可达110 m/Ma;南部地堑和隆起裂后期分别在11.7-5.7 Ma BP和15.9-11.7 Ma BP构造沉降速率最大可达70 m/Ma。莺歌海盆地新生代整体上表现为沉降速率与沉积速率变化基本一致,说明构造沉降对沉积速率具有显著的控制作用。重力反演发现莺歌海盆地可能存在下地壳高密度异常体,结合盆地沉积物内部钻遇玄武岩,我们推测下地壳高密度异常体为基性侵入体。通过与南海周边其他沉积盆地沉降速率对比发现,几乎所有盆地都在中中新世-晚中新世(15.9-11.7 Ma BP)发生了加速沉降事件,我们认为这可能跟南海海盆停止扩张导致大陆边缘次生地幔对流消失有关。莺歌海盆地5.7 Ma BP至今的加速沉降则可能与红河断裂右旋走滑活动有关。