5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content ...5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.展开更多
We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing thei...We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4%of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration.展开更多
文摘5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.
基金This work was supported by the National Key Research and Development Plan Projects of China(Grant No.2017YFC05054)the Graduate Student Science and Technology Innovation Project of the School of Geographical Science at Fujian Normal University(B2015112).
文摘We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4%of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration.