Aromatic diimide dyes are an attractive class of redox-active organic molecules for lithium-ion batteries,whose battery performances(stabilities,conductivities and cyclicities) are strongly dependent on the sizes of t...Aromatic diimide dyes are an attractive class of redox-active organic molecules for lithium-ion batteries,whose battery performances(stabilities,conductivities and cyclicities) are strongly dependent on the sizes of their π-systems.However,due to the different Clar’s structures possessed,three vertically7 r-extended aromatic diimides,namely,naphthalene diimide(two one-electron reductions),perylene diimide and terrylene diimide(two one-electron reductions),exhibit different electronic redox mechanisms when served as cathode materials in organic lithium-ion batteries.Herein,we have studied carefully the different electrochemical characteristics of the three aromatic diimides through experimental and theoretical calculations.Their battery present different shape of charge/discharge curves resulting from stability of their reduction state during charge/discharge process.Terrylene diimide shows better cycle and rate capacities than those of naphthalene diimide and perylene diimide,which could be attributed to the more energies released during terrylene diimide combining with lithium ions than those of other two diimides.展开更多
The electrochemical behavior of nitrofurazone in dimethylformamide has been studied by cyclic voltammetry and in-situ thin-layer spectroelectrochemistry.The redox reactions are complicated at platinium electrode,and a...The electrochemical behavior of nitrofurazone in dimethylformamide has been studied by cyclic voltammetry and in-situ thin-layer spectroelectrochemistry.The redox reactions are complicated at platinium electrode,and a possible electrochemical mechanism of nitrofurazone is proposed.展开更多
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior...The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.展开更多
Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)...Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)-II could not fully convert back to the pristine O_(3) -I phase while oxygen vacancies quickly generate and accumulate during the cycling.Our study paves the way for better understanding the doping effects of different elements on LiCoO_(2) in the future.展开更多
Lithium rich layered oxides(LLOs)are attractive cathode materials for Li-ion batteries owing to their high capacity(>250 mA h g^(-1))and suitable voltage(∼3.6 V).However,they suffer from serious voltage and capaci...Lithium rich layered oxides(LLOs)are attractive cathode materials for Li-ion batteries owing to their high capacity(>250 mA h g^(-1))and suitable voltage(∼3.6 V).However,they suffer from serious voltage and capacity fading,which is focused in this review.First,an overview of crystal structure,band structure and electrochemical performances of LLOs is provided.After that,current understanding on oxygen loss,capacity fading and voltage fading is summarized.Finally,five strategies to mitigate capacity and voltage fading are reviewed.It is believed that these understandings can help solve the fading problems of LLOs.展开更多
Aqueous redox flow batteries,by using redox-active molecules dissolved in nonflammable water solutions as electrolytes,are a promising technology for grid-scale energy storage.Organic redox-active materials offer a ne...Aqueous redox flow batteries,by using redox-active molecules dissolved in nonflammable water solutions as electrolytes,are a promising technology for grid-scale energy storage.Organic redox-active materials offer a new opportunity for the construction of advanced flow batteries due to their advantages of potentially low cost,extensive structural diversity,tunable electrochemical properties,and high natural abundance.In this review,we present the emergence and development of organic redox-active materials for aqueous organic redox flow batteries(AORFBs),in particular,molecular engineering concepts and strategies of organic redox-active molecules.The typical design strategies based on organic redox species for high-capacity,high-stability,and high-voltage AORFBs are outlined and discussed.Molecular engineering of organic redox-active molecules for high aqueous solubility,high chemical/electrochemical stability,and multiple electron numbers as well as satisfactory redox potential gap between the redox pair is essential to realizing high-performance AORFBs.Beyond molecular engineering,the redoxtargeting strategy is an effective way to obtain high-capacity AORFBs.We further discuss and analyze the redox reaction mechanisms of organic redox species based on a series of electrochemical and spectroscopic approaches,and succinctly summarize the capacity degradation mechanisms of AORFBs.Furthermore,the current challenges,opportunities,and future directions of organic redox-active materials for AORFBs are presented in detail.展开更多
The most commonly used electrode materials in lithium organic batteries(LOBs)are redox-active organic materials,which have the advantages of low cost,environmental safety,and adjustable structures.Although the use of ...The most commonly used electrode materials in lithium organic batteries(LOBs)are redox-active organic materials,which have the advantages of low cost,environmental safety,and adjustable structures.Although the use of organic materials as electrodes in LOBs has been reported,these materials have not attained the same recognition as inorganic electrode materials,mainly due to their slight electronic conductivity and possible solubility in organic electrolytes,resulting in a low reversible capacity.However,over the past 10 years,organic materials have achieved outstanding results when used as battery electrodes,and an increasing number of researchers have realized their significance.This review summarizes the recent progress in organic electrodes for use in rechargeable LOBs.By classifying Li-storage mechanisms with various functional organic groups and designing molecules for next-generation advanced lithium organic systems,we attempt to analyze the working principle and the effect of various organic functionalities on electrochemical performance,to reveal the advantages and disadvantages of various organic molecules and to propose possible design principles and development trends for future LOBs.In addition,we highlight the recently reported two-dimensional covalent organic framework that is unique in its extensiveπconjugated structure and Li-storage mechanisms based on benzene and N-containing rings;this framework is considered to be the most promising alternative to metal-based electrode materials with comparable large reversible capacities and long cycle lives.展开更多
基金supported by the National Natural Science Foundation of China (No.21572032)Program for New Century Excellent Talents in Fujian Province University+2 种基金Natural Science Foundation of Fujian Province (Nos.2018J01431 and 2018J01690)the Foundation of Science and Technology on Sanming Institute of Fluorochemical Industry (No.FCIT201706GR)Excellent Youth Exchange Program of China Association for Science and Technology in 2017
文摘Aromatic diimide dyes are an attractive class of redox-active organic molecules for lithium-ion batteries,whose battery performances(stabilities,conductivities and cyclicities) are strongly dependent on the sizes of their π-systems.However,due to the different Clar’s structures possessed,three vertically7 r-extended aromatic diimides,namely,naphthalene diimide(two one-electron reductions),perylene diimide and terrylene diimide(two one-electron reductions),exhibit different electronic redox mechanisms when served as cathode materials in organic lithium-ion batteries.Herein,we have studied carefully the different electrochemical characteristics of the three aromatic diimides through experimental and theoretical calculations.Their battery present different shape of charge/discharge curves resulting from stability of their reduction state during charge/discharge process.Terrylene diimide shows better cycle and rate capacities than those of naphthalene diimide and perylene diimide,which could be attributed to the more energies released during terrylene diimide combining with lithium ions than those of other two diimides.
文摘The electrochemical behavior of nitrofurazone in dimethylformamide has been studied by cyclic voltammetry and in-situ thin-layer spectroelectrochemistry.The redox reactions are complicated at platinium electrode,and a possible electrochemical mechanism of nitrofurazone is proposed.
文摘The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.
基金the National Natural Science Foundation of China(Nos.21872055,22172049,21874045)Shanghai Science and technology innovation action plan(No.19142202900)+1 种基金BASF,Fundamental Research Funds for Central Universities and Open Foundation of ECNU(42125102)ECNU multifunctional platform for innovation(EPR).
文摘Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)-II could not fully convert back to the pristine O_(3) -I phase while oxygen vacancies quickly generate and accumulate during the cycling.Our study paves the way for better understanding the doping effects of different elements on LiCoO_(2) in the future.
基金supported by China-Japanese Research Cooperative Program founded by the Ministry of Science and Technology of the People’s Republic of China(2017YFE0127600)the National Natural Science Foundation of China(No.21978153,51774191).
文摘Lithium rich layered oxides(LLOs)are attractive cathode materials for Li-ion batteries owing to their high capacity(>250 mA h g^(-1))and suitable voltage(∼3.6 V).However,they suffer from serious voltage and capacity fading,which is focused in this review.First,an overview of crystal structure,band structure and electrochemical performances of LLOs is provided.After that,current understanding on oxygen loss,capacity fading and voltage fading is summarized.Finally,five strategies to mitigate capacity and voltage fading are reviewed.It is believed that these understandings can help solve the fading problems of LLOs.
基金Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province,Grant/Award Number:BK20220008Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District,Grant/Award Number:ZXL2021273+5 种基金Central University Basic Research Fund of China,Grant/Award Numbers:020514380266,020514380272,020514380274Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200306Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:T23‐601/17‐RNational Natural Science Foundation of China,Grant/Award Numbers:21872069,22022505Nanjing International Collaboration Research Program,Grant/Award Numbers:202201007,2022SX00000955National Key R&D Program of China,Grant/Award Number:2017YFA0208200。
文摘Aqueous redox flow batteries,by using redox-active molecules dissolved in nonflammable water solutions as electrolytes,are a promising technology for grid-scale energy storage.Organic redox-active materials offer a new opportunity for the construction of advanced flow batteries due to their advantages of potentially low cost,extensive structural diversity,tunable electrochemical properties,and high natural abundance.In this review,we present the emergence and development of organic redox-active materials for aqueous organic redox flow batteries(AORFBs),in particular,molecular engineering concepts and strategies of organic redox-active molecules.The typical design strategies based on organic redox species for high-capacity,high-stability,and high-voltage AORFBs are outlined and discussed.Molecular engineering of organic redox-active molecules for high aqueous solubility,high chemical/electrochemical stability,and multiple electron numbers as well as satisfactory redox potential gap between the redox pair is essential to realizing high-performance AORFBs.Beyond molecular engineering,the redoxtargeting strategy is an effective way to obtain high-capacity AORFBs.We further discuss and analyze the redox reaction mechanisms of organic redox species based on a series of electrochemical and spectroscopic approaches,and succinctly summarize the capacity degradation mechanisms of AORFBs.Furthermore,the current challenges,opportunities,and future directions of organic redox-active materials for AORFBs are presented in detail.
基金This work was generously funded by the National Natural Science Foundation of China(52073170,22065017)the Project funded by China Postdoctoral Science Foundation(BX2021029,2021M700353)+2 种基金the Start-Up Grant and Scientific Research Project of Chaohu University(Nos.KYQD-202008 and XLY-202012)the Shanghai Municipal Education Commission(Innovation Program 2019-01-07-00-09-E00021)the Creative Research Team of High-level Local Universities in Shanghai.
文摘The most commonly used electrode materials in lithium organic batteries(LOBs)are redox-active organic materials,which have the advantages of low cost,environmental safety,and adjustable structures.Although the use of organic materials as electrodes in LOBs has been reported,these materials have not attained the same recognition as inorganic electrode materials,mainly due to their slight electronic conductivity and possible solubility in organic electrolytes,resulting in a low reversible capacity.However,over the past 10 years,organic materials have achieved outstanding results when used as battery electrodes,and an increasing number of researchers have realized their significance.This review summarizes the recent progress in organic electrodes for use in rechargeable LOBs.By classifying Li-storage mechanisms with various functional organic groups and designing molecules for next-generation advanced lithium organic systems,we attempt to analyze the working principle and the effect of various organic functionalities on electrochemical performance,to reveal the advantages and disadvantages of various organic molecules and to propose possible design principles and development trends for future LOBs.In addition,we highlight the recently reported two-dimensional covalent organic framework that is unique in its extensiveπconjugated structure and Li-storage mechanisms based on benzene and N-containing rings;this framework is considered to be the most promising alternative to metal-based electrode materials with comparable large reversible capacities and long cycle lives.