Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not ...Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach.展开更多
The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H...The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.展开更多
基金Aeronautical Science Foundation of China! ( 97E5 10 18) Shanghai Provincial Young Science Foundation of China !( 199910 18)
文摘Based on linear matrix inequalities (LMI), the design method of reduced order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach.
文摘The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.