In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its r...In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.展开更多
Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the re...Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the red,green,and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays.Herein,we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer(BCL)which is deposited through a common mask over the entire sub-pixels.Benefitted from the optimized device structure,red and green QLEDs retained their color coordinates despite the presence of the BCL.Furthermore,adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4%and 11.7%,respectively,due to the Förster resonance energy transfer from the BCL to the adjacent QD layers.With the BCL structure,we could simply demonstrate a full-color QD-organic hybrid device in a single substrate.We believe that this device architecture is practically applicable for easier fabrication of solution-processed,highresolution,and full-color displays with reduced process steps.展开更多
基金Project(2019JJ51007)supported by the Natural Science Foundation of Hunan Province,China。
文摘In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.
基金supported by the Technology Innovation Program(Nos.20010371 and 20010737)the Industrial Core Technology Development Program(No.10077471)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the red,green,and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays.Herein,we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer(BCL)which is deposited through a common mask over the entire sub-pixels.Benefitted from the optimized device structure,red and green QLEDs retained their color coordinates despite the presence of the BCL.Furthermore,adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4%and 11.7%,respectively,due to the Förster resonance energy transfer from the BCL to the adjacent QD layers.With the BCL structure,we could simply demonstrate a full-color QD-organic hybrid device in a single substrate.We believe that this device architecture is practically applicable for easier fabrication of solution-processed,highresolution,and full-color displays with reduced process steps.