Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled t...Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers.AKRs are aberrantly expressed in a wide range of malignant tumors.Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance.AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression.Inhibition of aldose reductase(AR),either alone or in combination with chemotherapeutic drugs,has evolved as a pragmatic therapeutic option for cancer.Several classes of synthetic aldo-keto reductase(AKR)inhibitors have been developed as potential anticancer agents,some of which have shown promise in clinical trials.Many AKR inhibitors from natural sources also exhibit anticancer effects.Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies.These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy.In this review,we discuss the physiological functions of human AKRs,the aberrant expression of AKRs in malignancies,the involvement of AKRs in the acquisition of cancer hallmarks,and the role of AKRs in oncogenic signaling,and drug resistance.Finally,the potential of aldose reductase inhibitors(ARIs)as anticancer drugs is summarized.展开更多
Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae)...Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae) as a whole-cell biocatalyst.However,some of the enzymes catalyzing these reactions in S.cerevisiae are still unknown up to date.In this report,two carbonyl reductases,OdCRl and OdCR2,were successfully discovered,and cloned from S.cerevisiae using a genome-mining approach,and overexpressed in Escherichia coli(E.coli).Compared with OdCR1,OdCR2 can reduce 4-oxodecanoic acid and 5-oxodecanoic acid asymmetrically with higher stereoselectivity,generating(R)-γ-decalactone(99% ee) and(R)-δ-decalactone(98% ee) in 85% and 92%yields,respectively.This is the first report of native enzymes from S.cerevisiae for the enzymatic synthesis of chiral γ-and δ-lactones which is of wide uses in food and cosmetic industries.展开更多
Introduction One of the major root alkaloids of the Indian medicinal plant Rauvolfia serpenlina Benth. ex Kurz is named ajmaline. The enzymatic biosynthesis of this alkaloid has been studied for a long time by our gr...Introduction One of the major root alkaloids of the Indian medicinal plant Rauvolfia serpenlina Benth. ex Kurz is named ajmaline. The enzymatic biosynthesis of this alkaloid has been studied for a long time by our group As a result, a biosynthetic pathway has been established, in which about 10 enzymes participate, several of them belonging to the group of NADPH-dependent reductases. Started with the biosynthetic precursors tryptamine and secologanin,展开更多
The thermostability of three sulfur oxygenase reductases (SORs) was investigated from thermoacidophilic achaea Acidianus tengchongensis (SORAT) and Sulfolobus tokodaii (SORsT) as well as the moderately thermophi...The thermostability of three sulfur oxygenase reductases (SORs) was investigated from thermoacidophilic achaea Acidianus tengchongensis (SORAT) and Sulfolobus tokodaii (SORsT) as well as the moderately thermophilic bacterium Acidithiobacillus sp. SM-1 (SORsB). The optimal temperatures for catalyzing sulfur oxidation were 80 ℃ (SORAT), 85 ℃ (SORsT), and 70 ℃ (SORsB), respectively. The half-lives of the three SORs at their optimal catalytic conditions were 100 min (SORAT), 58 min (SORsT), and 37 min (SORsB). In order to reveal the structural basis of the thermostability of these SORs, three-dimensional structural models of them were generated by homology modeling using the previously reported high-resolution X-ray structure of SORAA (from Acidianus ambivalens) as a template. The results suggest that thermostability was dependent on: (a) high number of the charged amino acid glutamic acid and the flexible amino acid proline, (b) low number of the therraolabile amino acid glutamine, (c) increased number of ion pairs, (d) decreased ratio of hydrophobie accessible solvent surface area (ASA) to charged ASA, and (e) increased volumes of the cavity. The number of cavities and the number of hydrogen bonds did not signifieantly affect the thermostability of SORs, whereas the cavity volumes increased as the thermal stability increased.展开更多
Ethyl(R)-4-chloro-3-hydroxybutyrate((R)-CHBE),as a chiral intermediate,is widely used in the synthesis of various chiral drugs.In this study,we screened two aldo–keto reductases(LP-AKRs)from the probiotic Lactobacill...Ethyl(R)-4-chloro-3-hydroxybutyrate((R)-CHBE),as a chiral intermediate,is widely used in the synthesis of various chiral drugs.In this study,we screened two aldo–keto reductases(LP-AKRs)from the probiotic Lactobacillus plantarum DSM20174,both with a molecular weight of approximately 31 kDa.Both enzymes could reduce 4-chloroacetoacetic acid ethyl ester(COBE)to produce(R)-CHBE with an enantioselectivity value of 99%.When determining the kinetic parameter,the K_(m),K_(cat),and V_(max)of LP-AKR5 and LP-AKR9 were 9.5 mM,7.6 U/mg,3.96 s^(-1)and 8.7 mM,8.59 U/mg,4.47 s^(-1),respectively.Both LP-AKR5 and LP-AKR9 had an optimal reaction pH of 6 and could maintain a high level of stability at pH 6,allowing them to perform well in an acidic environment.LP-AKR5 and LP-AKR9 had optimal reaction temperatures of 30℃and 40℃,respectively.Metal ions had minimal influence on LP-AKR5 and LP-AKR9 enzyme activities.This series of enzymatic properties showed that LP-AKR5 and LP-AKR9 mined from Lactobacillus plantarum DSM20174 could asym-metrically catalyze the synthesis of(R)-CHBE under weakly acidic circumstances,which could maintain product stability and provide a good foundation for industrial production.展开更多
Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reducrases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found ...Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reducrases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then de- scribed. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the ex- pression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.展开更多
Mutations in the photorespiration pathway dis- play a lethal phenotype in atmospheric air, which can be fully recovered by elevated C02. An exception is that mutants of peroxisomal hydroxypyruvate reductase (HPR1) d...Mutations in the photorespiration pathway dis- play a lethal phenotype in atmospheric air, which can be fully recovered by elevated C02. An exception is that mutants of peroxisomal hydroxypyruvate reductase (HPR1) do not have this phenotype, indicating the presence of cytosolic bypass in the photorespiration pathway. In this study, we constructed overexpression of the OsHPR1 gene and RNA interference plants of OsHPR1 and OsHPR2 genes in rice (Oryza sativo L. cv. Zhonghua 11). Results from reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and enzyme assays showed that HPR1 activity changed significantly in corresponding transgenic lines without any effect on HPR2 activity, which is the same for HPR2. However, metabolite analysis and the serine glyoxylate aminotransferase (SGAT) activity assay showed that the metabolite flux of photorespiration was disturbed in RNAi lines of both HPR genes. Furthermore, HPR1 and HPR2 proteins were located to the peroxisome and cytosol, respectively, by transient expression experiment. Double mutant hprl x hpr2 was generated by crossing individual mutant of hprl and hpr2. The phenotypes of all transgenic lines were determined in ambient air and C02-elevated air. The phenotype typical of photorespiration mutants was observed only where activity of both HPRI and HPR2 were downregulated in the same line. These findings demonstrate that two hydroxypyruvate reductases encoded by OsHPRI and OsHPR2 are involved in photorespiratory metabolism in rice.展开更多
Nitric oxide reductases(NORs)have a central role in denitrification,detoxification of nitric oxide(NO)in host-pathogen interactions,and NO-mediated cell-cell signaling.In this study,we focus on the phylogeny and detec...Nitric oxide reductases(NORs)have a central role in denitrification,detoxification of nitric oxide(NO)in host-pathogen interactions,and NO-mediated cell-cell signaling.In this study,we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases,their key role in denitrification,and their abundance in natural,agricultural,and wastewater ecosystems.We also include nitric oxide dismutase(NOD)due to its similarity to qNOR.Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producng bioreactors,we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes.These trees contain evidence of horizontal gene transfer and gene duplication,with 13.4%of the sequenced strains containing two or more nor genes.By aligning amino acid sequences for qnor+cnor,qnor,and cnor,we identified four highly conserved regions for NOR and NOD,including two highly conserved histidine residues at the active site for qNOR and cNOR.Extending this approach,we identified conserved sequences for:1)all nor(nor-universal);2)all qnor(qnor-universal)and all cnor(cnor-universal);3)qnor of Comamonadaceae;4)Clade-specific sequences;and 5)nod of Candidates Methylomirabilis oxyfera.Examples of primer performance were confirmed experimentally.展开更多
As a versatile type of enzyme,carboxylic acid reductases(CAR)can not only reduce various carboxylic acids to aldehydes in cooperation with cofactors ATP and NADPH but also catalyze the synthesis of amides and esters i...As a versatile type of enzyme,carboxylic acid reductases(CAR)can not only reduce various carboxylic acids to aldehydes in cooperation with cofactors ATP and NADPH but also catalyze the synthesis of amides and esters in the absence of NADPH.Here,we report an intramolecular cyclization catalyzed by CAR only with the use of ATP to transform amino acids into diverse lactams,includingγ-/δ-/ε-lactams and chiral derivatives thereof.The observed wide substrate scope and selectivity enable potential applications to be implemented.Our results demonstrate that CAR-catalyzed lactamization is a promising approach for the synthesis of chiral lactam com-pounds under mild conditions,thereby enriching the toolbox for the biosynthesis of lactams as a viable alternative to purely chemical procedures.展开更多
Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chem...Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.展开更多
OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bla...OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucidation of the carcino⁃genic mechanism of AA-Ⅰ.展开更多
BACKGROUND Idiopathic omental infarction(IOI)is challenging to diagnose due to its low incidence and vague symptoms.Its differential diagnosis also poses difficulties because it can mimic many intra-abdominal organ pa...BACKGROUND Idiopathic omental infarction(IOI)is challenging to diagnose due to its low incidence and vague symptoms.Its differential diagnosis also poses difficulties because it can mimic many intra-abdominal organ pathologies.Although hypercoagulability and thrombosis are among the causes of omental infarction,venous thromboembolism scanning is rarely performed as an etiological investigation.CASE SUMMARY The medical records of the 5 cases,who had the diagnosis of IOI by computed tomography,were examined.The majority of the patients were male(n=4,80%)and the mean age was 31 years(range:21-38).The patients had no previous abdominal surgery or a history of any chronic disease.The main complaint of all patients was persistent abdominal pain.Omental infarction was detected in all patients with contrast-enhanced computed tomography.Conservative treatment was initially preferred in all patients,but it failed in 1 patient(20%).After discharge,all patients were referred to the hematology department for thrombophilia screening.Only 1 patient applied for thrombophilia screening and was homozygous for methylenetetrahydrofolate reductase(A1298C mutation)and heterozygous for a factor V Leiden mutation.CONCLUSION IOI should be considered in the differential diagnosis in patients presenting with progressive and/or persistent right side abdominal pain.Investigating risk factors such as hypercoagulability in patients with IOI is also important in preventing future conditions related to venous thromboembolism.展开更多
Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the...Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the ability of dividing cells to make nucleotides by competitively inhibiting DHFR. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been previously reported to exhibit competitive inhibition of DHFR, in addition to their primary action on cyclooxygenase enzymes. This interaction interferes with the enzymatic reduction of dihydrofolate to tetrahydrofolate, thereby impeding the folate metabolism pathway essential for nucleotide synthesis and cell proliferation. This activity stems from their structural resemblance to the p-aminobenzoyl-l-glutamate (pABG) moiety of folate, a substrate of DHFR. It has been established that NSAIDs containing a salicylate group (which has structural similarities to pABG), such as diflunisal, exhibit stronger DHFR-binding activity. In this study, we synthesized salicylate derivatives of naproxen with the aim of exploring their potential as inhibitors of DHFR. The interactions between these derivatives and human DHFR were characterized using a combination of biochemical, biophysical, and structural methods. Through polyacrylamide gel electrophoresis (PAGE) analysis, enzymatic assays, and quantitative ELISA, we investigated the binding affinity and inhibitory potency of the synthesized salicylate derivatives towards DHFR. The findings of this study suggest the potential of salicylate derivatives of naproxen as promising candidates for the inhibition of DHFR, thereby offering novel therapeutic opportunities for modulating the inflammatory process through multiple pathways. Further optimization of these derivatives could lead to the development of more efficacious dual-targeted analogs with enhanced therapeutic benefits.展开更多
BACKGROUND Liver transplantation(LT)is a potentially curative therapy for patients with hepatocellular carcinoma(HCC).HCC-recurrence following LT is associated with reduced survival.There is increasing interest in che...BACKGROUND Liver transplantation(LT)is a potentially curative therapy for patients with hepatocellular carcinoma(HCC).HCC-recurrence following LT is associated with reduced survival.There is increasing interest in chemoprophylaxis to improve HCC-related outcomes post-LT.AIM To investigate whether there is any benefit for the use of drugs with proposed chemoprophylactic properties against HCC,and patient outcomes following LT.METHODS This was a retrospective study of adult patients who received Deceased Donor LT for HCC from 2005-2022,from a single Australian centre.Drug use was defined as statin,aspirin or metformin therapy for≥29 days,within 24 months post-LT.A cox proportional-hazards model with time-dependent covariates was used for survival analysis.Outcome measures were the composite-endpoint of HCC-recurrence and all-cause mortality,HCC-recurrence and HCC-related mortality.Sensitivity analysis was performed to account for immortality time bias and statin dosing.RESULTS Three hundred and five patients were included in this study,with 253(82.95%)males with a median age of 58.90 years.Aetiologies of liver disease were 150(49.18%)hepatitis C,73(23.93%)hepatitis B(HBV)and 33(10.82%)non-alcoholic fatty liver disease(NAFLD).56(18.36%)took statins,51(16.72%)aspirin and 50(16.39%)metformin.During a median follow-up time of 59.90 months,34(11.15%)developed HCC-recurrence,48(15.74%)died,17(5.57%)from HCC-related mortality.Statin,aspirin or metformin use was not associated with statistically significant differences in the composite endpoint of HCC-recurrence or all-cause mortality[hazard ratio(HR):1.16,95%CI:0.58-2.30;HR:1.21,95%CI:0.28-5.27;HR:0.61,95%CI:0.27-1.36],HCC-recurrence(HR:0.52,95%CI:0.20-1.35;HR:0.51,95%CI:0.14-1.93;HR 1.00,95%CI:0.37-2.72),or HCC-related mortality(HR:0.32,95%CI:0.033-3.09;HR:0.71,95%CI:0.14-3.73;HR:1.57,95%CI:0.61-4.04)respectively.Statin dosing was not associated with statist-ically significant differences in HCC-related outcomes.CONCLUSION Statin,metformin or aspirin use was not associated with improved HCC-related outcomes post-LT,in a largely historical cohort of Australian patients with a low proportion of NAFLD.Further prospective,multicentre studies are required to clarify any potential benefit of these drugs to improve HCC-related outcomes.展开更多
Cinnamoyl-CoA reductase (CCR) is responsible for the first committed reaction in monolignol biosynthesis, which diverts phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understandi...Cinnamoyl-CoA reductase (CCR) is responsible for the first committed reaction in monolignol biosynthesis, which diverts phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understanding of the lion biosynthesis in wheat development, two cDNAs encoding CCR were identified from wheat (Triticum aestivum L. cv. H4564). DNA sequence analyses indicated that the two cDNAs represent two classes of CCR. RT-PCR and Northern blot hybridization demonstrated that one of them, W-cr6, was expressed actively in stem and leaf tissue, the other one, W-cr19, was expressed in root and stem tissue. The results suggested that there are at least two genes encoded for CCR existing in wheat genome.展开更多
[Objective] The aim was to clone the cDNA and DNA sequences of the CCR (Cinnamoyl-CoA reductase) gene which involves in lignin biosynthesis, from Pennisetum purpureum, and to make comprehensive analysis on these seq...[Objective] The aim was to clone the cDNA and DNA sequences of the CCR (Cinnamoyl-CoA reductase) gene which involves in lignin biosynthesis, from Pennisetum purpureum, and to make comprehensive analysis on these sequences. [Method] CCR sequences were cloned from P. purpureum by using conventional RT-PCR and RACE (Rapid Amplification of cDNA Ends) methods; and the bioinformatic analyses of the CCR were conducted by means of NCBI, ProtParam ProtScale, TMHMM, TargetP, SignalP, Pfam20.0, Prosite, Swiss-Model, ClustalW2, DNAman, DNAstar and MEGA5. [Result] The cloned PpCCR (P. purpureum CCR) cDNA sequence was 1 316 bp, including a 1 110 bp ORF and 206 bp 3’-UTR. The cloned DNA sequence from PpCCR was 6 133 bp in full-length, containing five exons and four introns. Bioinformatic analysis indicated that PpCCR encoded a polypeptide of 369 amino acids, the secondary structure of which was primarily composed of random coil and α-helix, belonging to NAD-dependent epimerase/dehydratase family, and its co-factor binding sites and substrate binding sites were highly conserved. [Conclusion] DNA and cDNA sequences of CCR gene were obtained from P. purpureum, which had the typical characteristics of other homologous genes. The obtained bioinformatic data provided theoretical references for the further analysis of CCR and better application of P. purpureum in the future.展开更多
[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two...[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.展开更多
Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of diff...Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of different positions was observed,and the correlations between leaf NRA, leaf area and lamina mass per unit area (LMA) were also examined. The results showed that NRA in the leaf was significantly highest, compared with that in other organs such as roots, stems and leaves. In this experiment, the 10 leaves were selected from the apex to the base of the seedlings in order. The different NRA occurred obviously in leaves of different positions of C. acuminata seedlings from the apex to the base, and NRA was higher in the 4th-6th leaves.The diurnal change rhythm of leaf NRA showed a one peak curve, and maximum NRA value appeared at about midday (at 12:30 or so). No obvious correlations between NRA and leaf area or lamina mass per unit area were observed. This study offered scientific foundation for the further research on nitrogen metabolism of C. acuminata.展开更多
基金SN and GBR are supported by grants from the Science and Engineering Research Board,Government of India(EMR/2016/001984)Indian Council of Medical Research.
文摘Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers.AKRs are aberrantly expressed in a wide range of malignant tumors.Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance.AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression.Inhibition of aldose reductase(AR),either alone or in combination with chemotherapeutic drugs,has evolved as a pragmatic therapeutic option for cancer.Several classes of synthetic aldo-keto reductase(AKR)inhibitors have been developed as potential anticancer agents,some of which have shown promise in clinical trials.Many AKR inhibitors from natural sources also exhibit anticancer effects.Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies.These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy.In this review,we discuss the physiological functions of human AKRs,the aberrant expression of AKRs in malignancies,the involvement of AKRs in the acquisition of cancer hallmarks,and the role of AKRs in oncogenic signaling,and drug resistance.Finally,the potential of aldose reductase inhibitors(ARIs)as anticancer drugs is summarized.
基金financially sponsored by the National Key Research and Development Program of China (2016YFA0204300, 2019YFA09005000)the National Natural Science Foundation of China (21536004, 21776085, 21871085)+2 种基金the Natural Science Foundation of Shanghai (18ZR1409900)Key Project of the Shanghai Science and Technology Committee (18DZ1112703)the Fundamental Research Funds for the Central Universities (WF1714026)。
文摘Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae) as a whole-cell biocatalyst.However,some of the enzymes catalyzing these reactions in S.cerevisiae are still unknown up to date.In this report,two carbonyl reductases,OdCRl and OdCR2,were successfully discovered,and cloned from S.cerevisiae using a genome-mining approach,and overexpressed in Escherichia coli(E.coli).Compared with OdCR1,OdCR2 can reduce 4-oxodecanoic acid and 5-oxodecanoic acid asymmetrically with higher stereoselectivity,generating(R)-γ-decalactone(99% ee) and(R)-δ-decalactone(98% ee) in 85% and 92%yields,respectively.This is the first report of native enzymes from S.cerevisiae for the enzymatic synthesis of chiral γ-and δ-lactones which is of wide uses in food and cosmetic industries.
文摘Introduction One of the major root alkaloids of the Indian medicinal plant Rauvolfia serpenlina Benth. ex Kurz is named ajmaline. The enzymatic biosynthesis of this alkaloid has been studied for a long time by our group As a result, a biosynthetic pathway has been established, in which about 10 enzymes participate, several of them belonging to the group of NADPH-dependent reductases. Started with the biosynthetic precursors tryptamine and secologanin,
基金Supported by the National Natural Science Foundation of China (31070042,30870039,30921065)partially by Open Funding Project of the National Key Laboratory of Biochemical Engineering,China (2010KF-2)
文摘The thermostability of three sulfur oxygenase reductases (SORs) was investigated from thermoacidophilic achaea Acidianus tengchongensis (SORAT) and Sulfolobus tokodaii (SORsT) as well as the moderately thermophilic bacterium Acidithiobacillus sp. SM-1 (SORsB). The optimal temperatures for catalyzing sulfur oxidation were 80 ℃ (SORAT), 85 ℃ (SORsT), and 70 ℃ (SORsB), respectively. The half-lives of the three SORs at their optimal catalytic conditions were 100 min (SORAT), 58 min (SORsT), and 37 min (SORsB). In order to reveal the structural basis of the thermostability of these SORs, three-dimensional structural models of them were generated by homology modeling using the previously reported high-resolution X-ray structure of SORAA (from Acidianus ambivalens) as a template. The results suggest that thermostability was dependent on: (a) high number of the charged amino acid glutamic acid and the flexible amino acid proline, (b) low number of the therraolabile amino acid glutamine, (c) increased number of ion pairs, (d) decreased ratio of hydrophobie accessible solvent surface area (ASA) to charged ASA, and (e) increased volumes of the cavity. The number of cavities and the number of hydrogen bonds did not signifieantly affect the thermostability of SORs, whereas the cavity volumes increased as the thermal stability increased.
文摘Ethyl(R)-4-chloro-3-hydroxybutyrate((R)-CHBE),as a chiral intermediate,is widely used in the synthesis of various chiral drugs.In this study,we screened two aldo–keto reductases(LP-AKRs)from the probiotic Lactobacillus plantarum DSM20174,both with a molecular weight of approximately 31 kDa.Both enzymes could reduce 4-chloroacetoacetic acid ethyl ester(COBE)to produce(R)-CHBE with an enantioselectivity value of 99%.When determining the kinetic parameter,the K_(m),K_(cat),and V_(max)of LP-AKR5 and LP-AKR9 were 9.5 mM,7.6 U/mg,3.96 s^(-1)and 8.7 mM,8.59 U/mg,4.47 s^(-1),respectively.Both LP-AKR5 and LP-AKR9 had an optimal reaction pH of 6 and could maintain a high level of stability at pH 6,allowing them to perform well in an acidic environment.LP-AKR5 and LP-AKR9 had optimal reaction temperatures of 30℃and 40℃,respectively.Metal ions had minimal influence on LP-AKR5 and LP-AKR9 enzyme activities.This series of enzymatic properties showed that LP-AKR5 and LP-AKR9 mined from Lactobacillus plantarum DSM20174 could asym-metrically catalyze the synthesis of(R)-CHBE under weakly acidic circumstances,which could maintain product stability and provide a good foundation for industrial production.
文摘Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reducrases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then de- scribed. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the ex- pression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.
基金supported by the National Natural Science Foundation of China (U1201212 31170222)+1 种基金the Shenzhen Overseas Talents Innovation and Entrepreneurship Funding Scheme (The Peacock Scheme)China Postdoctoral Science Foundation (2013M530374)
文摘Mutations in the photorespiration pathway dis- play a lethal phenotype in atmospheric air, which can be fully recovered by elevated C02. An exception is that mutants of peroxisomal hydroxypyruvate reductase (HPR1) do not have this phenotype, indicating the presence of cytosolic bypass in the photorespiration pathway. In this study, we constructed overexpression of the OsHPR1 gene and RNA interference plants of OsHPR1 and OsHPR2 genes in rice (Oryza sativo L. cv. Zhonghua 11). Results from reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and enzyme assays showed that HPR1 activity changed significantly in corresponding transgenic lines without any effect on HPR2 activity, which is the same for HPR2. However, metabolite analysis and the serine glyoxylate aminotransferase (SGAT) activity assay showed that the metabolite flux of photorespiration was disturbed in RNAi lines of both HPR genes. Furthermore, HPR1 and HPR2 proteins were located to the peroxisome and cytosol, respectively, by transient expression experiment. Double mutant hprl x hpr2 was generated by crossing individual mutant of hprl and hpr2. The phenotypes of all transgenic lines were determined in ambient air and C02-elevated air. The phenotype typical of photorespiration mutants was observed only where activity of both HPRI and HPR2 were downregulated in the same line. These findings demonstrate that two hydroxypyruvate reductases encoded by OsHPRI and OsHPR2 are involved in photorespiratory metabolism in rice.
基金supported in part by a grant from the US National Science Foundation Engineering Research Center Reinventing the Nation's Urban Water Infrastructure(ReNUWIt)(Award No.EEC-1028968)in part by a grant from the NASA Center(USA)for the Utilization of Biological Engineering in Space(CUBES)(Award No.NNX17AJ31G).
文摘Nitric oxide reductases(NORs)have a central role in denitrification,detoxification of nitric oxide(NO)in host-pathogen interactions,and NO-mediated cell-cell signaling.In this study,we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases,their key role in denitrification,and their abundance in natural,agricultural,and wastewater ecosystems.We also include nitric oxide dismutase(NOD)due to its similarity to qNOR.Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producng bioreactors,we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes.These trees contain evidence of horizontal gene transfer and gene duplication,with 13.4%of the sequenced strains containing two or more nor genes.By aligning amino acid sequences for qnor+cnor,qnor,and cnor,we identified four highly conserved regions for NOR and NOD,including two highly conserved histidine residues at the active site for qNOR and cNOR.Extending this approach,we identified conserved sequences for:1)all nor(nor-universal);2)all qnor(qnor-universal)and all cnor(cnor-universal);3)qnor of Comamonadaceae;4)Clade-specific sequences;and 5)nod of Candidates Methylomirabilis oxyfera.Examples of primer performance were confirmed experimentally.
基金supported by the National Key Research and Development Program of China(No.2019YFA0905100)the National Natural Science Foundation of China(No.31900909)+1 种基金the Natural Science Foundation Applying a system of Tianjin(No.21JCJQJC00110)and Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No.TSBICIP-CXRC-009)Mr Qu also thanks financial support from Youth Innovation Promotion Association,CAS(No.2021175).
文摘As a versatile type of enzyme,carboxylic acid reductases(CAR)can not only reduce various carboxylic acids to aldehydes in cooperation with cofactors ATP and NADPH but also catalyze the synthesis of amides and esters in the absence of NADPH.Here,we report an intramolecular cyclization catalyzed by CAR only with the use of ATP to transform amino acids into diverse lactams,includingγ-/δ-/ε-lactams and chiral derivatives thereof.The observed wide substrate scope and selectivity enable potential applications to be implemented.Our results demonstrate that CAR-catalyzed lactamization is a promising approach for the synthesis of chiral lactam com-pounds under mild conditions,thereby enriching the toolbox for the biosynthesis of lactams as a viable alternative to purely chemical procedures.
基金National Yang Ming Chiao Tung University Far Eastern Memorial Hospital Joint Research Programs(NYCU-FEMH 109DN03,110DN06,111DN04,112DN05).
文摘Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.
文摘OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucidation of the carcino⁃genic mechanism of AA-Ⅰ.
文摘BACKGROUND Idiopathic omental infarction(IOI)is challenging to diagnose due to its low incidence and vague symptoms.Its differential diagnosis also poses difficulties because it can mimic many intra-abdominal organ pathologies.Although hypercoagulability and thrombosis are among the causes of omental infarction,venous thromboembolism scanning is rarely performed as an etiological investigation.CASE SUMMARY The medical records of the 5 cases,who had the diagnosis of IOI by computed tomography,were examined.The majority of the patients were male(n=4,80%)and the mean age was 31 years(range:21-38).The patients had no previous abdominal surgery or a history of any chronic disease.The main complaint of all patients was persistent abdominal pain.Omental infarction was detected in all patients with contrast-enhanced computed tomography.Conservative treatment was initially preferred in all patients,but it failed in 1 patient(20%).After discharge,all patients were referred to the hematology department for thrombophilia screening.Only 1 patient applied for thrombophilia screening and was homozygous for methylenetetrahydrofolate reductase(A1298C mutation)and heterozygous for a factor V Leiden mutation.CONCLUSION IOI should be considered in the differential diagnosis in patients presenting with progressive and/or persistent right side abdominal pain.Investigating risk factors such as hypercoagulability in patients with IOI is also important in preventing future conditions related to venous thromboembolism.
文摘Dihydrofolate reductase (DHFR) is an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). Chemotherapy drugs such as methotrexate help to slow the progression of cancer by limiting the ability of dividing cells to make nucleotides by competitively inhibiting DHFR. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been previously reported to exhibit competitive inhibition of DHFR, in addition to their primary action on cyclooxygenase enzymes. This interaction interferes with the enzymatic reduction of dihydrofolate to tetrahydrofolate, thereby impeding the folate metabolism pathway essential for nucleotide synthesis and cell proliferation. This activity stems from their structural resemblance to the p-aminobenzoyl-l-glutamate (pABG) moiety of folate, a substrate of DHFR. It has been established that NSAIDs containing a salicylate group (which has structural similarities to pABG), such as diflunisal, exhibit stronger DHFR-binding activity. In this study, we synthesized salicylate derivatives of naproxen with the aim of exploring their potential as inhibitors of DHFR. The interactions between these derivatives and human DHFR were characterized using a combination of biochemical, biophysical, and structural methods. Through polyacrylamide gel electrophoresis (PAGE) analysis, enzymatic assays, and quantitative ELISA, we investigated the binding affinity and inhibitory potency of the synthesized salicylate derivatives towards DHFR. The findings of this study suggest the potential of salicylate derivatives of naproxen as promising candidates for the inhibition of DHFR, thereby offering novel therapeutic opportunities for modulating the inflammatory process through multiple pathways. Further optimization of these derivatives could lead to the development of more efficacious dual-targeted analogs with enhanced therapeutic benefits.
基金This study was approved by the Austin Health Human Ethics Research Committee(No.HREC/87459/Austin-2022).
文摘BACKGROUND Liver transplantation(LT)is a potentially curative therapy for patients with hepatocellular carcinoma(HCC).HCC-recurrence following LT is associated with reduced survival.There is increasing interest in chemoprophylaxis to improve HCC-related outcomes post-LT.AIM To investigate whether there is any benefit for the use of drugs with proposed chemoprophylactic properties against HCC,and patient outcomes following LT.METHODS This was a retrospective study of adult patients who received Deceased Donor LT for HCC from 2005-2022,from a single Australian centre.Drug use was defined as statin,aspirin or metformin therapy for≥29 days,within 24 months post-LT.A cox proportional-hazards model with time-dependent covariates was used for survival analysis.Outcome measures were the composite-endpoint of HCC-recurrence and all-cause mortality,HCC-recurrence and HCC-related mortality.Sensitivity analysis was performed to account for immortality time bias and statin dosing.RESULTS Three hundred and five patients were included in this study,with 253(82.95%)males with a median age of 58.90 years.Aetiologies of liver disease were 150(49.18%)hepatitis C,73(23.93%)hepatitis B(HBV)and 33(10.82%)non-alcoholic fatty liver disease(NAFLD).56(18.36%)took statins,51(16.72%)aspirin and 50(16.39%)metformin.During a median follow-up time of 59.90 months,34(11.15%)developed HCC-recurrence,48(15.74%)died,17(5.57%)from HCC-related mortality.Statin,aspirin or metformin use was not associated with statistically significant differences in the composite endpoint of HCC-recurrence or all-cause mortality[hazard ratio(HR):1.16,95%CI:0.58-2.30;HR:1.21,95%CI:0.28-5.27;HR:0.61,95%CI:0.27-1.36],HCC-recurrence(HR:0.52,95%CI:0.20-1.35;HR:0.51,95%CI:0.14-1.93;HR 1.00,95%CI:0.37-2.72),or HCC-related mortality(HR:0.32,95%CI:0.033-3.09;HR:0.71,95%CI:0.14-3.73;HR:1.57,95%CI:0.61-4.04)respectively.Statin dosing was not associated with statist-ically significant differences in HCC-related outcomes.CONCLUSION Statin,metformin or aspirin use was not associated with improved HCC-related outcomes post-LT,in a largely historical cohort of Australian patients with a low proportion of NAFLD.Further prospective,multicentre studies are required to clarify any potential benefit of these drugs to improve HCC-related outcomes.
文摘Cinnamoyl-CoA reductase (CCR) is responsible for the first committed reaction in monolignol biosynthesis, which diverts phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understanding of the lion biosynthesis in wheat development, two cDNAs encoding CCR were identified from wheat (Triticum aestivum L. cv. H4564). DNA sequence analyses indicated that the two cDNAs represent two classes of CCR. RT-PCR and Northern blot hybridization demonstrated that one of them, W-cr6, was expressed actively in stem and leaf tissue, the other one, W-cr19, was expressed in root and stem tissue. The results suggested that there are at least two genes encoded for CCR existing in wheat genome.
基金Supported by the National Natural Science Foundation of China(30972138)the Guangdong Natural Science Foundation(9451064201003804)~~
文摘[Objective] The aim was to clone the cDNA and DNA sequences of the CCR (Cinnamoyl-CoA reductase) gene which involves in lignin biosynthesis, from Pennisetum purpureum, and to make comprehensive analysis on these sequences. [Method] CCR sequences were cloned from P. purpureum by using conventional RT-PCR and RACE (Rapid Amplification of cDNA Ends) methods; and the bioinformatic analyses of the CCR were conducted by means of NCBI, ProtParam ProtScale, TMHMM, TargetP, SignalP, Pfam20.0, Prosite, Swiss-Model, ClustalW2, DNAman, DNAstar and MEGA5. [Result] The cloned PpCCR (P. purpureum CCR) cDNA sequence was 1 316 bp, including a 1 110 bp ORF and 206 bp 3’-UTR. The cloned DNA sequence from PpCCR was 6 133 bp in full-length, containing five exons and four introns. Bioinformatic analysis indicated that PpCCR encoded a polypeptide of 369 amino acids, the secondary structure of which was primarily composed of random coil and α-helix, belonging to NAD-dependent epimerase/dehydratase family, and its co-factor binding sites and substrate binding sites were highly conserved. [Conclusion] DNA and cDNA sequences of CCR gene were obtained from P. purpureum, which had the typical characteristics of other homologous genes. The obtained bioinformatic data provided theoretical references for the further analysis of CCR and better application of P. purpureum in the future.
基金Supported by the Special Funds for Modern Agricultural (oilseed rape) Technical System (MATS) of Chinathe National Natural Science Foundation of China (NSFC) (31071372)~~
文摘[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.
文摘Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of different positions was observed,and the correlations between leaf NRA, leaf area and lamina mass per unit area (LMA) were also examined. The results showed that NRA in the leaf was significantly highest, compared with that in other organs such as roots, stems and leaves. In this experiment, the 10 leaves were selected from the apex to the base of the seedlings in order. The different NRA occurred obviously in leaves of different positions of C. acuminata seedlings from the apex to the base, and NRA was higher in the 4th-6th leaves.The diurnal change rhythm of leaf NRA showed a one peak curve, and maximum NRA value appeared at about midday (at 12:30 or so). No obvious correlations between NRA and leaf area or lamina mass per unit area were observed. This study offered scientific foundation for the further research on nitrogen metabolism of C. acuminata.