A new iron-fly ash packing was studied for reductive transformation of p-nitrotoluene. The packing was made of iron, fly ash and kaolin with the mass ratio of 36:7:2. A reactor was designed to investigate the long-t...A new iron-fly ash packing was studied for reductive transformation of p-nitrotoluene. The packing was made of iron, fly ash and kaolin with the mass ratio of 36:7:2. A reactor was designed to investigate the long-term performance of the packing. The results showed that the reduction of p-nitrotoluene increased with decreasing pH, because the reduction potential of reaction increased with the concentration of H+. The pH was one of the key factors impacting the reductive transformation of p-nitrotoluene. Comparing iron-activated carbon packing with the new iron-fly ash packing, the reduction efficiencies were respectively 76.61% and 75.36% after20 days. The reduction efficiency for both was around 50% at 40 days. It was evident that these two kinds of packing had no significant difference in their capability for p-nitrotoluene reductive transformation. Compared with iron-activated carbon, the new iron-fly ash packing had obvious advantages in terms of manufacturing costs and environmental pollution degradation. This study showed that the new iron-fly ash packing had good performance in reductive transformation of nitrotoluene compounds.展开更多
The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has foun...The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has found wide application in hydrogenation of various carbonyl groups, and has successfully been applied to reductive transformation of CO_2 with high catalytic efficiency and excellent selectivity. In addition, ruthenium complexes have also served as effective photosensitizers for CO_2 photoreduction.Classified by reductive products, this review summarizes and updates advances in the Ru-catalyzed reduction of CO_2 along with catalyst development on the basis of mechanistic understanding at a molecular level.展开更多
The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K....The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).展开更多
The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction d...The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.展开更多
The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse...The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
Rice sheath blight pathogen,Rhizoctonia solani,produces numerous sclerotia to overwinter.As a rich source of nutrients in the soil,sclerotia may lead to the change of soil microbiota.For this purpose,we amended the sc...Rice sheath blight pathogen,Rhizoctonia solani,produces numerous sclerotia to overwinter.As a rich source of nutrients in the soil,sclerotia may lead to the change of soil microbiota.For this purpose,we amended the sclerotia of R.solani in soil and analyzed the changes in bacterial microbiota within the soil at different time points.At the phyla level,Proteobacteria,Acidobacteria,Bacteroidetes,Actinobacteria,Chloroflexi and Firmicutes showed varied abundance in the amended soil samples compared to those in the control.An increased abundance of ammonia-oxidizing bacterium(AOB)Nitrosospira and Nitrite oxidizing bacteria(NOB)i.e.,Nitrospira was observed,where the latter is reportedly involved in the nitrifier denitrification.Moreover,Thiobacillus,Gemmatimonas,Anaeromyxobacter and Geobacter,the vital players in denitrification,N2O reduction and reductive nitrogen transformation,respectively,depicted enhanced abundance in R.solani sclerotia-amended samples.Furthermore,asymbiotic nitrogen-fixing bacteria,notably,Azotobacter as well as Microvirga and Phenylobacterium with nitrogen-fixing potential also enriched in the amended samples compared to the control.Plant growth promoting bacteria,such as Kribbella,Chitinophaga and Flavisolibacter also enriched in the sclerotia-amended soil.As per our knowledge,this study is of its kind where pathogenic fungal sclerotia activated microbes with a potential role in N transformation and provided clues about the ecological functions of R.solani sclerotia on the stimulation of bacterial genera involved in different processes of N-cycle within the soil in the absence of host plants.展开更多
To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,t...To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,time,and carbon ratio( molar ratio of fixed carbon in coal to oxygen in iron oxides of VTM) on reduction degree were investigated.Results show that reduction degree increases with increasing volatile matter in coal,temperature,time,and carbon ratio.Phase transformation,microstructure,and reduction path were analyzed by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fact Sage 6. 0. The thermoravimetry-differential scanning calorimetry-quadrupole mass spectrometer method was used for kinetic analysis of the main reduction process. Results indicate that the kinetic mechanism follows the principle of random nucleation and growth( n = 4),and the activation energy values at 600-900 and 900-1 350 ℃ are 88. 7 and 295. 5 kJ / mol,respectively.展开更多
Recent theoretical physics efforts have been focused on the probes for nonlinear pulse waves in,for example,variable-radius arteries.With respect to the nonlinear waves in an artery full of blood with certain aneurysm...Recent theoretical physics efforts have been focused on the probes for nonlinear pulse waves in,for example,variable-radius arteries.With respect to the nonlinear waves in an artery full of blood with certain aneurysm,pulses in a blood vessel,or features in a circulatory system,this paper symbolically computes out an auto-B?cklund transformation via a noncharacteristic movable singular manifold,certain families of the solitonic solutions,as well as a family of the similarity reductions for a variable-coefficient generalized forced–perturbed Korteweg–de Vries–Burgers equation.Aiming,e.g.,at the dynamical radial displacement superimposed on the original static deformation from an arterial wall,our results rely on the axial stretch of the injured artery,blood as an incompressible Newtonian fluid,radius variation along the axial direction or aneurysmal geometry,viscosity of the fluid,thickness of the artery,mass density of the membrane material,mass density of the fluid,strain energy density of the artery,shear modulus,stretch ratio,etc.We also highlight that the shock-wave structures from our solutions agree well with those dusty-plasma-experimentally reported.展开更多
基金supported by the National Key Scientific and Technology Project for Water Pollution Treatment of China (No. 2012ZX07202-002)
文摘A new iron-fly ash packing was studied for reductive transformation of p-nitrotoluene. The packing was made of iron, fly ash and kaolin with the mass ratio of 36:7:2. A reactor was designed to investigate the long-term performance of the packing. The results showed that the reduction of p-nitrotoluene increased with decreasing pH, because the reduction potential of reaction increased with the concentration of H+. The pH was one of the key factors impacting the reductive transformation of p-nitrotoluene. Comparing iron-activated carbon packing with the new iron-fly ash packing, the reduction efficiencies were respectively 76.61% and 75.36% after20 days. The reduction efficiency for both was around 50% at 40 days. It was evident that these two kinds of packing had no significant difference in their capability for p-nitrotoluene reductive transformation. Compared with iron-activated carbon, the new iron-fly ash packing had obvious advantages in terms of manufacturing costs and environmental pollution degradation. This study showed that the new iron-fly ash packing had good performance in reductive transformation of nitrotoluene compounds.
基金supported by the National Key Research and Development Program(2016YFA0602900)the National Natural Science Foundation of China(21472103,21672119)+2 种基金the Natural Science Foundation of Tianjin Municipality(16JCZDJC39900)Specialized Research Fund for the Doctoral Program of Higher Education(20130031110013)MOE Innovation Team(IRT13022)of China
文摘The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has found wide application in hydrogenation of various carbonyl groups, and has successfully been applied to reductive transformation of CO_2 with high catalytic efficiency and excellent selectivity. In addition, ruthenium complexes have also served as effective photosensitizers for CO_2 photoreduction.Classified by reductive products, this review summarizes and updates advances in the Ru-catalyzed reduction of CO_2 along with catalyst development on the basis of mechanistic understanding at a molecular level.
基金financially supported by National Basic Research Program of China(No.2012CB720400)the National Natural Science Foundation of China(No.51504216)
文摘The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).
基金financially supported by the National Natural Science Foundation of China (No. 51090384)the National High-Tech Research and Development Program of China (No. 2012AA062302)the Fundamental Research Funds for the Central Universities of China (Nos. N110202001 and N130602003)
文摘The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9 TiO 15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeT iO 3 → TiO 2;(Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeC r2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.
基金supported by the National Natural Science Foundation of China (61077079)the Specialized Research Fund for the Doctoral Program of Higher Education (20102304110013)the Program Ex-cellent Academic Leaders of Harbin (2009RFXXG034)
文摘The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
基金funded by the National Key R&D Program(grant number No.2017YFD0200600)and the earmarked fund for CARS-12.
文摘Rice sheath blight pathogen,Rhizoctonia solani,produces numerous sclerotia to overwinter.As a rich source of nutrients in the soil,sclerotia may lead to the change of soil microbiota.For this purpose,we amended the sclerotia of R.solani in soil and analyzed the changes in bacterial microbiota within the soil at different time points.At the phyla level,Proteobacteria,Acidobacteria,Bacteroidetes,Actinobacteria,Chloroflexi and Firmicutes showed varied abundance in the amended soil samples compared to those in the control.An increased abundance of ammonia-oxidizing bacterium(AOB)Nitrosospira and Nitrite oxidizing bacteria(NOB)i.e.,Nitrospira was observed,where the latter is reportedly involved in the nitrifier denitrification.Moreover,Thiobacillus,Gemmatimonas,Anaeromyxobacter and Geobacter,the vital players in denitrification,N2O reduction and reductive nitrogen transformation,respectively,depicted enhanced abundance in R.solani sclerotia-amended samples.Furthermore,asymbiotic nitrogen-fixing bacteria,notably,Azotobacter as well as Microvirga and Phenylobacterium with nitrogen-fixing potential also enriched in the amended samples compared to the control.Plant growth promoting bacteria,such as Kribbella,Chitinophaga and Flavisolibacter also enriched in the sclerotia-amended soil.As per our knowledge,this study is of its kind where pathogenic fungal sclerotia activated microbes with a potential role in N transformation and provided clues about the ecological functions of R.solani sclerotia on the stimulation of bacterial genera involved in different processes of N-cycle within the soil in the absence of host plants.
基金Item Sponsored by National High-tech Research and Development Project of China(2012AA062302)Major Program of National Natural Science Foundation of China(51090384)Fundamental Research Funds for the Central Universities of China(N130602003)
文摘To achieve the high-efficiency utilization of vanadium-titanium magnetite( VTM),reduction experiments were conducted to determine the carbothermic reduction mechanism of VTM. Effects of volatile matter,temperature,time,and carbon ratio( molar ratio of fixed carbon in coal to oxygen in iron oxides of VTM) on reduction degree were investigated.Results show that reduction degree increases with increasing volatile matter in coal,temperature,time,and carbon ratio.Phase transformation,microstructure,and reduction path were analyzed by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fact Sage 6. 0. The thermoravimetry-differential scanning calorimetry-quadrupole mass spectrometer method was used for kinetic analysis of the main reduction process. Results indicate that the kinetic mechanism follows the principle of random nucleation and growth( n = 4),and the activation energy values at 600-900 and 900-1 350 ℃ are 88. 7 and 295. 5 kJ / mol,respectively.
基金supported by the National Natural Science Foundation of China under Grant Nos.11871116 and 11772017the Fundamental Research Funds for the Central Universities of China under Grant No.2019XD-A11.
文摘Recent theoretical physics efforts have been focused on the probes for nonlinear pulse waves in,for example,variable-radius arteries.With respect to the nonlinear waves in an artery full of blood with certain aneurysm,pulses in a blood vessel,or features in a circulatory system,this paper symbolically computes out an auto-B?cklund transformation via a noncharacteristic movable singular manifold,certain families of the solitonic solutions,as well as a family of the similarity reductions for a variable-coefficient generalized forced–perturbed Korteweg–de Vries–Burgers equation.Aiming,e.g.,at the dynamical radial displacement superimposed on the original static deformation from an arterial wall,our results rely on the axial stretch of the injured artery,blood as an incompressible Newtonian fluid,radius variation along the axial direction or aneurysmal geometry,viscosity of the fluid,thickness of the artery,mass density of the membrane material,mass density of the fluid,strain energy density of the artery,shear modulus,stretch ratio,etc.We also highlight that the shock-wave structures from our solutions agree well with those dusty-plasma-experimentally reported.