The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of spec...The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.展开更多
Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coeffici...Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.展开更多
It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulat...It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulations are fed to a commercial solver. In addition, even if dimensions are kept the same, changes in formulations may largely influence solvability and quality of results. This becomes evident especially if redundant constraints are used. We propose a related framework for information collection based on these constraints. We exemplify by means of a well-known combinatorial optimization problem from the knapsack problem family, i.e., the multidimensional multiple-choice knapsack problem (MMKP). This incorporates a relationship of the MMKP to some generalized set partitioning problems. Moreover, we investigate an application in maritime shipping and logistics by means of the dynamic berth allocation problem (DBAP), where optimal solutions are reached from the root node within the solver.展开更多
文摘The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.
基金supported by National Natural Science Foundation of China (No. 71171199)Natural Science Foundation of Shaanxi Province of China (No. 2013JM1003)
文摘Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.
文摘It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulations are fed to a commercial solver. In addition, even if dimensions are kept the same, changes in formulations may largely influence solvability and quality of results. This becomes evident especially if redundant constraints are used. We propose a related framework for information collection based on these constraints. We exemplify by means of a well-known combinatorial optimization problem from the knapsack problem family, i.e., the multidimensional multiple-choice knapsack problem (MMKP). This incorporates a relationship of the MMKP to some generalized set partitioning problems. Moreover, we investigate an application in maritime shipping and logistics by means of the dynamic berth allocation problem (DBAP), where optimal solutions are reached from the root node within the solver.