In a large eutrophic lake,the littoral zone is normally an area with high-density elevated aquatic plant life,including algal blooms,where the presence of reed wetlands allows the accumulation of algae.In this study,t...In a large eutrophic lake,the littoral zone is normally an area with high-density elevated aquatic plant life,including algal blooms,where the presence of reed wetlands allows the accumulation of algae.In this study,the impact of accumulated algal blooms in reed wetlands in the littoral zone s of Chaohu Lake was investigated seasonally from 2018 to 2019.The concentrations of chlorophyll a(Chl a),total nitrogen(TN),and total phosphorus(TP)were much higher in the reed-covered littoral zones(RCLZ)than in the unvegetated littoral zones(ULZ),indicating that more algal biomass was trapped and accumulated in the RCLZ.Algal biomass could be horizontally transported to downwind littoral zones under low wind speeds,favoring the establishment of blooms.Algal accumulation levels were highest in summer due to high water temperatures and algal biomasses.Likewise,the northern littoral zones were conducive to the development of large algal blooms because of the wind pattern.The values of TN,TP,Chl a,and loss on ignition in surface sediments were higher in the RCLZ than in the ULZ.Moreover,the diffusive fluxes of ammonium and soluble reactive pho sphorus were also higher in the RCLZ than in the ULZ.Considering the capability of reed wetlands to trap algae,mechanical salvage and other physical methods should be adopted to eliminate algal biomass when massive blooms accumulate in the RCLZ.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas...Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.展开更多
The researches about reed growth were mainly concentrated on seasonal dynamics, investigation of reed resource, and comparison of different ecotypes of reed. By means of fractal geometric theory of non linear science...The researches about reed growth were mainly concentrated on seasonal dynamics, investigation of reed resource, and comparison of different ecotypes of reed. By means of fractal geometric theory of non linear science, the fractal character of growth pattern of reed, for the purpose of quantitatively exploring the mechanism of reed growth was studied. The way to calculate fractal dimension of reed growth is box dimension (BD) and information dimension (ID). The results showed that the difference between two samplings in May and those among three samplings in June and later were not remarkable for both BD or ID. It was noted that the difference between samplings in and after May is significant. It was demonstrated that the fractal dimension of size distribution of reed ranged from 0 6235 to 0 8761 The distribution pattern could be statistically divided as two significant periods: the size of reed is quite well distributed at the beginning of reed growth (fractal dimension>0 8), but is irregular in the middle and later growth season (fractal dimension<0 7). These results are benefit to reach the goal of rational use of reed resources and to protect the biodiversity in wetland ecosystem.展开更多
The estuary wetland is the last barrier for inland pollutants flowing into the sea. The possibility to use the natural wetland, mainly reed marsh and Suaeda heteroptera community as land treatment system to polluted ...The estuary wetland is the last barrier for inland pollutants flowing into the sea. The possibility to use the natural wetland, mainly reed marsh and Suaeda heteroptera community as land treatment system to polluted river water was studied. Experimental results indicated that the reed march has a high retention rate to pollutants like COD, N, P and oil. The canal system has high a purification rate to these elements as well. There is also a big potential to use the Suaeda community as a treatment system to exchange water from prawn and crab breeding ponds along the coast. As the pollution problem of coastal seawater has become more and more serious in Eastern China, and Liaohe is among the most seriously polluted 7 rivers in China, this study will greatly contribute to the strategy makers to take suitable reactions.展开更多
The removal of ammonia and phosphorus from an artificial wastewater was studied in two lab-scale reed beds.During batch and continuous operations,it was found that ammonia was removed from the wastewater via a two-ste...The removal of ammonia and phosphorus from an artificial wastewater was studied in two lab-scale reed beds.During batch and continuous operations,it was found that ammonia was removed from the wastewater via a two-step process,sorption inside bed matrices followed by nitrification into nitrite and nitrate.Rapid decrease in the concentration of ammonia in the artificial wastewater was observed during the batch operation,whereas during the continuous operation,which lasted for 39 days,the percentage removal of ammonia decreased gradually with time before stabilizing at around 20%.The efficiency of phosphorus removal exhausted rapidly during the continuous operation,from 39% on the first day of operation to virtually zero after only 5 days.The results suggest that sorption(which may include ion exchange,adsorption,and biomass assimilation) serves as an initial step to remove ammonia and phosphorus from the wastewater,prior to any microbial transformations.展开更多
Reed pans are a very uncommon type of endorheic wetland, and as such the amount of information available is very limited. Thus, they are being impacted on by various agricultural, livestock and other anthropogenic act...Reed pans are a very uncommon type of endorheic wetland, and as such the amount of information available is very limited. Thus, they are being impacted on by various agricultural, livestock and other anthropogenic activities. The objectives of this study were to determine the spatial and temporal variations of macroinvertebrate community structures in reed pans and the environmental factors (i.e., water quality) responsible for the maintenance of these structures. Reed pans were studied over four different seasons, during which time subsurface water, sediment and macroinvertebrate samples were collected and analyzed. The reed pans studied showed that the macroinvertebrates were able to reflect various changes in reed pans with regard to seasonal variability and anthropogenic impacts on water quality. These anthropogenic impacts caused the disappearance of sensitive macroinvertebrate taxa and the increase of tolerant macroinvertebrate taxa.展开更多
Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in th...Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in this country have expanded substantially,due to the demand for green technologies and rising cost of fossil fuel energies.This paper reported a statistical investigation of the performances of 78 horizontal flow wetlands,representatives of such system in the United Kingdom.Alternative design equations,based on organic matter removal efficiency,have been developed from Monod kinetics,and the accuracy and reliability of current and alternative design approaches have been examined.展开更多
The main removal mechanisms for the degradations of seven pollutants in wastewater treatment wetlands were analysed,and a mathematical model was established to quantify the removal of each pollutant,based on its main ...The main removal mechanisms for the degradations of seven pollutants in wastewater treatment wetlands were analysed,and a mathematical model was established to quantify the removal of each pollutant,based on its main removal mechanisms.Subsurface horizontal flow wetlands were treated as a series of continuous stirred-tank reactors(CSTRs).Kinetic models for the removal of biochemical oxygen demand,chemical oxygen demand,ammonia,total nitrogen and faecal coliforms were established by combining Monod or first-order kinetics with CSTR assumptions.These tentative models account for a wide range of factors that affect wetland performance,but the models have not been proven by experiment data.Depending on the derivation of various coefficients in the models and verification by actual performance data,this study may provide a starting point for an integrated pollutant removal model to be developed,and experimentally verified,thereby making a step forward from the current greenbox'approach of wetland design.展开更多
利用涡度相关法对黄河三角洲芦苇湿地生态系统进行了连续两年的通量观测,对2009—2010年生长季芦苇湿地的净生态系统碳交换量(NEE),感热通量(Hs)和潜热通量(LE)数据进行了分析。结果表明,在日尺度上,芦苇湿地NEE日变化特征表现为两个CO...利用涡度相关法对黄河三角洲芦苇湿地生态系统进行了连续两年的通量观测,对2009—2010年生长季芦苇湿地的净生态系统碳交换量(NEE),感热通量(Hs)和潜热通量(LE)数据进行了分析。结果表明,在日尺度上,芦苇湿地NEE日变化特征表现为两个CO2吸收高峰,分别出现在11:00和16:00左右,其特点是在午间出现了碳交换通量的降低。CO2吸收的日最大值在两个生长季出现的时间有所不同,分别出现在2009年7月(-0.30 mg CO2m-2s-1)和2010年6月(-0.37 mg CO2m-2s-1)。CO2排放的日最大值两个生长季均出现在9月,分别为0.19和0.25 mg CO2m-2s-1。Hs和LE的日动态均为单峰型,极值都出现在中午前后,生长季生态系统的能量消耗主要以潜热为主,且在日尺度上,热通量和NEE有显著的负相关关系。在季节尺度上,芦苇湿地生长季具有明显的碳汇功能,2009年生长季生态系统白天固定354.63 g CO2/m2,同时期夜间释放159.24 g CO2/m2,净CO2吸收量为-195.39 g CO2/m2。2009年整个生长季生态系统总初级生产力(GPP)为-651.13 g CO2/m2,生态系统呼吸(Re)为455.74 g CO2/m2,系统表现为碳汇。路径分析表明:光合有效辐射(PAR)显著影响NEE的日动态(R2=0.46—0.84),而NEE的季节动态主要受土壤温度的影响,降水和PAR的影响次之。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41877544,32071573,42177227)。
文摘In a large eutrophic lake,the littoral zone is normally an area with high-density elevated aquatic plant life,including algal blooms,where the presence of reed wetlands allows the accumulation of algae.In this study,the impact of accumulated algal blooms in reed wetlands in the littoral zone s of Chaohu Lake was investigated seasonally from 2018 to 2019.The concentrations of chlorophyll a(Chl a),total nitrogen(TN),and total phosphorus(TP)were much higher in the reed-covered littoral zones(RCLZ)than in the unvegetated littoral zones(ULZ),indicating that more algal biomass was trapped and accumulated in the RCLZ.Algal biomass could be horizontally transported to downwind littoral zones under low wind speeds,favoring the establishment of blooms.Algal accumulation levels were highest in summer due to high water temperatures and algal biomasses.Likewise,the northern littoral zones were conducive to the development of large algal blooms because of the wind pattern.The values of TN,TP,Chl a,and loss on ignition in surface sediments were higher in the RCLZ than in the ULZ.Moreover,the diffusive fluxes of ammonium and soluble reactive pho sphorus were also higher in the RCLZ than in the ULZ.Considering the capability of reed wetlands to trap algae,mechanical salvage and other physical methods should be adopted to eliminate algal biomass when massive blooms accumulate in the RCLZ.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金Under the auspices of National Natural Science Foundation of China(No.41101080)Shandong Natural Science Foundation of China(No.ZR2014DQ028,ZR2015DM004)
文摘Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.
文摘The researches about reed growth were mainly concentrated on seasonal dynamics, investigation of reed resource, and comparison of different ecotypes of reed. By means of fractal geometric theory of non linear science, the fractal character of growth pattern of reed, for the purpose of quantitatively exploring the mechanism of reed growth was studied. The way to calculate fractal dimension of reed growth is box dimension (BD) and information dimension (ID). The results showed that the difference between two samplings in May and those among three samplings in June and later were not remarkable for both BD or ID. It was noted that the difference between samplings in and after May is significant. It was demonstrated that the fractal dimension of size distribution of reed ranged from 0 6235 to 0 8761 The distribution pattern could be statistically divided as two significant periods: the size of reed is quite well distributed at the beginning of reed growth (fractal dimension>0 8), but is irregular in the middle and later growth season (fractal dimension<0 7). These results are benefit to reach the goal of rational use of reed resources and to protect the biodiversity in wetland ecosystem.
文摘The estuary wetland is the last barrier for inland pollutants flowing into the sea. The possibility to use the natural wetland, mainly reed marsh and Suaeda heteroptera community as land treatment system to polluted river water was studied. Experimental results indicated that the reed march has a high retention rate to pollutants like COD, N, P and oil. The canal system has high a purification rate to these elements as well. There is also a big potential to use the Suaeda community as a treatment system to exchange water from prawn and crab breeding ponds along the coast. As the pollution problem of coastal seawater has become more and more serious in Eastern China, and Liaohe is among the most seriously polluted 7 rivers in China, this study will greatly contribute to the strategy makers to take suitable reactions.
文摘The removal of ammonia and phosphorus from an artificial wastewater was studied in two lab-scale reed beds.During batch and continuous operations,it was found that ammonia was removed from the wastewater via a two-step process,sorption inside bed matrices followed by nitrification into nitrite and nitrate.Rapid decrease in the concentration of ammonia in the artificial wastewater was observed during the batch operation,whereas during the continuous operation,which lasted for 39 days,the percentage removal of ammonia decreased gradually with time before stabilizing at around 20%.The efficiency of phosphorus removal exhausted rapidly during the continuous operation,from 39% on the first day of operation to virtually zero after only 5 days.The results suggest that sorption(which may include ion exchange,adsorption,and biomass assimilation) serves as an initial step to remove ammonia and phosphorus from the wastewater,prior to any microbial transformations.
文摘Reed pans are a very uncommon type of endorheic wetland, and as such the amount of information available is very limited. Thus, they are being impacted on by various agricultural, livestock and other anthropogenic activities. The objectives of this study were to determine the spatial and temporal variations of macroinvertebrate community structures in reed pans and the environmental factors (i.e., water quality) responsible for the maintenance of these structures. Reed pans were studied over four different seasons, during which time subsurface water, sediment and macroinvertebrate samples were collected and analyzed. The reed pans studied showed that the macroinvertebrates were able to reflect various changes in reed pans with regard to seasonal variability and anthropogenic impacts on water quality. These anthropogenic impacts caused the disappearance of sensitive macroinvertebrate taxa and the increase of tolerant macroinvertebrate taxa.
文摘Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in this country have expanded substantially,due to the demand for green technologies and rising cost of fossil fuel energies.This paper reported a statistical investigation of the performances of 78 horizontal flow wetlands,representatives of such system in the United Kingdom.Alternative design equations,based on organic matter removal efficiency,have been developed from Monod kinetics,and the accuracy and reliability of current and alternative design approaches have been examined.
文摘The main removal mechanisms for the degradations of seven pollutants in wastewater treatment wetlands were analysed,and a mathematical model was established to quantify the removal of each pollutant,based on its main removal mechanisms.Subsurface horizontal flow wetlands were treated as a series of continuous stirred-tank reactors(CSTRs).Kinetic models for the removal of biochemical oxygen demand,chemical oxygen demand,ammonia,total nitrogen and faecal coliforms were established by combining Monod or first-order kinetics with CSTR assumptions.These tentative models account for a wide range of factors that affect wetland performance,but the models have not been proven by experiment data.Depending on the derivation of various coefficients in the models and verification by actual performance data,this study may provide a starting point for an integrated pollutant removal model to be developed,and experimentally verified,thereby making a step forward from the current greenbox'approach of wetland design.
文摘利用涡度相关法对黄河三角洲芦苇湿地生态系统进行了连续两年的通量观测,对2009—2010年生长季芦苇湿地的净生态系统碳交换量(NEE),感热通量(Hs)和潜热通量(LE)数据进行了分析。结果表明,在日尺度上,芦苇湿地NEE日变化特征表现为两个CO2吸收高峰,分别出现在11:00和16:00左右,其特点是在午间出现了碳交换通量的降低。CO2吸收的日最大值在两个生长季出现的时间有所不同,分别出现在2009年7月(-0.30 mg CO2m-2s-1)和2010年6月(-0.37 mg CO2m-2s-1)。CO2排放的日最大值两个生长季均出现在9月,分别为0.19和0.25 mg CO2m-2s-1。Hs和LE的日动态均为单峰型,极值都出现在中午前后,生长季生态系统的能量消耗主要以潜热为主,且在日尺度上,热通量和NEE有显著的负相关关系。在季节尺度上,芦苇湿地生长季具有明显的碳汇功能,2009年生长季生态系统白天固定354.63 g CO2/m2,同时期夜间释放159.24 g CO2/m2,净CO2吸收量为-195.39 g CO2/m2。2009年整个生长季生态系统总初级生产力(GPP)为-651.13 g CO2/m2,生态系统呼吸(Re)为455.74 g CO2/m2,系统表现为碳汇。路径分析表明:光合有效辐射(PAR)显著影响NEE的日动态(R2=0.46—0.84),而NEE的季节动态主要受土壤温度的影响,降水和PAR的影响次之。