Energy issue is of strategic importance influencing China’s overall economic and social development that needs systematic planning and far-sighted deliberation.At the present time the revolution of energy technology ...Energy issue is of strategic importance influencing China’s overall economic and social development that needs systematic planning and far-sighted deliberation.At the present time the revolution of energy technology is advancing rapidly.The global innovation of energy technology has entered a highly dynamic period featured by multi-point breakthroughs,展开更多
In the research of software reuse, feature models have been widely adopted to capture, organize and reuse the requirements of a set of similar applications in a software do- main. However, the construction, especially...In the research of software reuse, feature models have been widely adopted to capture, organize and reuse the requirements of a set of similar applications in a software do- main. However, the construction, especially the refinement, of feature models is a labor-intensive process, and there lacks an effective way to aid domain engineers in refining feature models. In this paper, we propose a new approach to support interactive refinement of feature models based on the view updating technique. The basic idea of our approach is to first extract features and relationships of interest from a possibly large and complicated feature model, then organize them into a comprehensible view, and finally refine the feature model through modifications on the view. The main characteristics of this approach are twofold: a set of powerful rules (as the slicing criterion) to slice the feature model into a view auto- matically, and a novel use of a bidirectional transformation language to make the view updatable. We have successfully developed a tool, and a nontrivial case study shows the feasi- bility of this approach.展开更多
In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.T...In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.To address these issues,we collect and annotate the substation rotated device dataset(SRDD).Further,feature fusion and feature refinement network(F3RNet)are constructed based on the classic structure pattern of backbone-neck-head.Considering the similar appearance of electrical devices,the deconvolution fusion module(DFM)is designed to enhance the expression of feature information.The balanced feature pyramid(BFP)is embedded to aggregate the global feature.The feature refinement is constructed to adjust the original feature maps by considering the feature alignment between the anchors and devices.It can generate more accurate feature vectors.To address the problem of sample imbalance between electrical devices,the gradient harmonized mechanism(GHM)loss is utilized to adjust the weight of each sample.The ablation experiments are conducted on the SRDD dataset.F3RNet achieves the best detection performance compared with classical object detection networks.Also,it is verified that the features from global feature maps can effectively recognize the similar and small devices.展开更多
文摘Energy issue is of strategic importance influencing China’s overall economic and social development that needs systematic planning and far-sighted deliberation.At the present time the revolution of energy technology is advancing rapidly.The global innovation of energy technology has entered a highly dynamic period featured by multi-point breakthroughs,
文摘In the research of software reuse, feature models have been widely adopted to capture, organize and reuse the requirements of a set of similar applications in a software do- main. However, the construction, especially the refinement, of feature models is a labor-intensive process, and there lacks an effective way to aid domain engineers in refining feature models. In this paper, we propose a new approach to support interactive refinement of feature models based on the view updating technique. The basic idea of our approach is to first extract features and relationships of interest from a possibly large and complicated feature model, then organize them into a comprehensible view, and finally refine the feature model through modifications on the view. The main characteristics of this approach are twofold: a set of powerful rules (as the slicing criterion) to slice the feature model into a view auto- matically, and a novel use of a bidirectional transformation language to make the view updatable. We have successfully developed a tool, and a nontrivial case study shows the feasi- bility of this approach.
基金This work was supported by Science and Technology Project of State Grid Corporation of China(Research and application of audiovisual active perception and collaborative cognitive technology for smart grid operation and maintenance scenarios)(5600–202046347 A-0–0–00).
文摘In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.To address these issues,we collect and annotate the substation rotated device dataset(SRDD).Further,feature fusion and feature refinement network(F3RNet)are constructed based on the classic structure pattern of backbone-neck-head.Considering the similar appearance of electrical devices,the deconvolution fusion module(DFM)is designed to enhance the expression of feature information.The balanced feature pyramid(BFP)is embedded to aggregate the global feature.The feature refinement is constructed to adjust the original feature maps by considering the feature alignment between the anchors and devices.It can generate more accurate feature vectors.To address the problem of sample imbalance between electrical devices,the gradient harmonized mechanism(GHM)loss is utilized to adjust the weight of each sample.The ablation experiments are conducted on the SRDD dataset.F3RNet achieves the best detection performance compared with classical object detection networks.Also,it is verified that the features from global feature maps can effectively recognize the similar and small devices.