Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a...Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.展开更多
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ...Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.展开更多
In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considere...In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fracture...In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.展开更多
Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ...Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.展开更多
Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spat...Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spatial resolution detection has encouraged rapid growth in total internal reflection fluorescence microscopy(TIRFM).By producing an evanescent wave on the glass–water interface,excitation can be limited to a thin plane to ensure the measured accuracy of kinetics and image contrast of TIRFM.Thus,this unique physical principle of TIRFM makes it suitable for chemical research.This review outlines applications of TIRFM in the field of chemistry,including imaging and kinetics research.Hence,this review could provide guidance for beginners employing TIRFM to solve current challenges creatively in chemistry.展开更多
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information...Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.展开更多
In this paper, by taking into account the thickness of the incident shock as well as the influence of the boundary layer, we point out that even in a regular reflection there should be present a contact discontinuity....In this paper, by taking into account the thickness of the incident shock as well as the influence of the boundary layer, we point out that even in a regular reflection there should be present a contact discontinuity. By using the smallest energy criterion, the inclined angle of this contact discontinuity can be determined for differen incident angle. Then, with this inclined contact discontinuity, together with the law of conservation of mass, the mechanism for the transition from a regular reflection to a Mach reflection or a von Neumann reflection becomes clear. The important roles played by the leftest point in the reflected shock polar are identified.展开更多
In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our resul...In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our results agree with those obtained by Landau and Lifshitz [Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory) (New York: Pergamon)], which proves that ATMM is a simple and effective method for quantum reflection.展开更多
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away fr...Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.展开更多
Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected wav...Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.展开更多
We introduce the Thomsen anisotropic parameters into the approximate linear reflection coefficient equation for P-SV wave in weakly anisotropic HTI media. From this we get a new, more effective, and practical reflecti...We introduce the Thomsen anisotropic parameters into the approximate linear reflection coefficient equation for P-SV wave in weakly anisotropic HTI media. From this we get a new, more effective, and practical reflection coefficient equation. We performed forward modeling to AVO attributes, obtaining excellent results. The combined AVO attribute analysis of PP and PS reflection data can greatly reduce ambiguity, obtain better petrophysical parameters, and improve parameter accuracy.展开更多
Antimony tin oxide (ATO) nano-particles doped with different Sb contents were prepared by co-precipitation method, using SnCl4·5H2O and SbCl3 as main raw materials. Microstructure, morphology and reflectivity c...Antimony tin oxide (ATO) nano-particles doped with different Sb contents were prepared by co-precipitation method, using SnCl4·5H2O and SbCl3 as main raw materials. Microstructure, morphology and reflectivity curves were characterized by XRD, FESEM, UV-visible spectroscopy and laser, and the effects of Sb content on crystalline microstructure, crystal size and reflectivity curves of the ATO nano-particles were investigated systematically. The results show that the ATO nano-particles prepared by co-precipitation method have tetragonal rutile structure, with particle size distribution range of several decade nanometer. With the increase of Sb content, the grain size of ATO decreases, and the unit cell volume increases. Compared with the SnO2 particles without Sb, the 1.06 μm laser reflection of ATO nano-particles doped with Sb is obviously lower. With the increase of Sb content, the reflection increases first, then decreases;when the Sb content is 20%, 1.06μm laser reflection of ATO nano-particles is below 0.02%, and the laser reflection performance is the best.展开更多
Aiming at a series of existing problems of ecological landscape in farmland and in residential district at northern villages,and problems like low recovery rate of wastes,uncertain evaluation index of ecological lands...Aiming at a series of existing problems of ecological landscape in farmland and in residential district at northern villages,and problems like low recovery rate of wastes,uncertain evaluation index of ecological landscape,managers' low consciousnesses and insufficient organization and management at northern villages;the corresponding planning suggestions were proposed.Scientific farming,developing ecological agriculture and perfecting ecological corridor system were of great significance to ecological landscape of farmland.Reasonable ecological construction,fully utilizing renewable energy sources,overall planning,improving land utilization rate and highlighting regional characteristic of ecological landscape were of great significance to ecological landscape of residential district.Tourism agriculture development should be emphasized,ecological landscape theory study enhanced,administrative organization perfected and reasonable ecological evaluation carried out,respecting the principle of ecology,fully exploring regional characteristics,strengthening government's guidance and considering villagers' will,so as to construct a society in which man and nature were in harmony.展开更多
As Xinjiang rural settlement planning has only paid attention to the completion of basic community functions but neglected landscape planning and shaping,strategies for sustainable development have been proposed by ta...As Xinjiang rural settlement planning has only paid attention to the completion of basic community functions but neglected landscape planning and shaping,strategies for sustainable development have been proposed by taking rural settlement landscape construction in mixed living areas of Wuchang for example.It should well deal with problems about nationalities and religious belief,solve the contradiction between traditional life and production mode and modern standardized agricultural life and production mode,promote the maximization of settlement landscape function,coordinate the relation between settlement landscape and natural environment,make settlement landscape correspond with traditional geomancy,construct definite landscape position and create regional landscape feature.Finally,in view of the design and renovation of settlement landscape,it has proposed respecting local natural geological condition,respecting current settlement pattern and layout,avoiding rebuilding new villages,and founding a"Settlement Landscape Construction and Development Autonomous Committee".展开更多
A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key paramete...A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.展开更多
Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep t...Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion(RTI) and reflection waveform inversion(RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0204001,2018YFA0209103,2016YFB0400101,and 2016YFB0402303)the National Natural Science Foundation of China(Grant Nos.61627822,61704121,61991430,and 62074036)Postdoctoral Research Program of Jiangsu Province(Grant No.2021K599C).
文摘Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
文摘In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
文摘In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.
基金supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under Grant Agreement 881771).
文摘Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.
基金This work was supported by the National Science Foundation of China(21925205,22072145,22102172,21721003)。
文摘Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spatial resolution detection has encouraged rapid growth in total internal reflection fluorescence microscopy(TIRFM).By producing an evanescent wave on the glass–water interface,excitation can be limited to a thin plane to ensure the measured accuracy of kinetics and image contrast of TIRFM.Thus,this unique physical principle of TIRFM makes it suitable for chemical research.This review outlines applications of TIRFM in the field of chemistry,including imaging and kinetics research.Hence,this review could provide guidance for beginners employing TIRFM to solve current challenges creatively in chemistry.
文摘Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.
基金supported by the NNSF of China(11271323,91330105)the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002)supported by a GRF grant(City U 11303015)from the Research Grants Council of Hong Kong SAR,China
文摘In this paper, by taking into account the thickness of the incident shock as well as the influence of the boundary layer, we point out that even in a regular reflection there should be present a contact discontinuity. By using the smallest energy criterion, the inclined angle of this contact discontinuity can be determined for differen incident angle. Then, with this inclined contact discontinuity, together with the law of conservation of mass, the mechanism for the transition from a regular reflection to a Mach reflection or a von Neumann reflection becomes clear. The important roles played by the leftest point in the reflected shock polar are identified.
基金Project supported by Science Foundation of Nantong University (Grant Nos. 03080122 and 09ZY001)
文摘In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our results agree with those obtained by Landau and Lifshitz [Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory) (New York: Pergamon)], which proves that ATMM is a simple and effective method for quantum reflection.
基金supported by National Petroleum Major Project(Grant No.2011ZX05020-008)
文摘Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
基金supported by the National Natural Science Foundation of China (Grant No.50674098)the 863 Program (Grant No.2006AA06Z207 & 2006AA06Z213)the 973 Program (Grant No.2007CB209601)
文摘Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.
基金the National "973" Project (No.2007CB209603) the "863" Project (No.2006AA06Z108)
文摘We introduce the Thomsen anisotropic parameters into the approximate linear reflection coefficient equation for P-SV wave in weakly anisotropic HTI media. From this we get a new, more effective, and practical reflection coefficient equation. We performed forward modeling to AVO attributes, obtaining excellent results. The combined AVO attribute analysis of PP and PS reflection data can greatly reduce ambiguity, obtain better petrophysical parameters, and improve parameter accuracy.
基金Project(10KJB430008)supported by the Natural Science Foundation of Colleges in Jiangsu Province,ChinaProjects(2013(CXZZ13_0421),2012(CXLX12_0425))supported by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaResearch and Innovation Program for College Graduates of Jiangsu Province,China
文摘Antimony tin oxide (ATO) nano-particles doped with different Sb contents were prepared by co-precipitation method, using SnCl4·5H2O and SbCl3 as main raw materials. Microstructure, morphology and reflectivity curves were characterized by XRD, FESEM, UV-visible spectroscopy and laser, and the effects of Sb content on crystalline microstructure, crystal size and reflectivity curves of the ATO nano-particles were investigated systematically. The results show that the ATO nano-particles prepared by co-precipitation method have tetragonal rutile structure, with particle size distribution range of several decade nanometer. With the increase of Sb content, the grain size of ATO decreases, and the unit cell volume increases. Compared with the SnO2 particles without Sb, the 1.06 μm laser reflection of ATO nano-particles doped with Sb is obviously lower. With the increase of Sb content, the reflection increases first, then decreases;when the Sb content is 20%, 1.06μm laser reflection of ATO nano-particles is below 0.02%, and the laser reflection performance is the best.
文摘Aiming at a series of existing problems of ecological landscape in farmland and in residential district at northern villages,and problems like low recovery rate of wastes,uncertain evaluation index of ecological landscape,managers' low consciousnesses and insufficient organization and management at northern villages;the corresponding planning suggestions were proposed.Scientific farming,developing ecological agriculture and perfecting ecological corridor system were of great significance to ecological landscape of farmland.Reasonable ecological construction,fully utilizing renewable energy sources,overall planning,improving land utilization rate and highlighting regional characteristic of ecological landscape were of great significance to ecological landscape of residential district.Tourism agriculture development should be emphasized,ecological landscape theory study enhanced,administrative organization perfected and reasonable ecological evaluation carried out,respecting the principle of ecology,fully exploring regional characteristics,strengthening government's guidance and considering villagers' will,so as to construct a society in which man and nature were in harmony.
文摘As Xinjiang rural settlement planning has only paid attention to the completion of basic community functions but neglected landscape planning and shaping,strategies for sustainable development have been proposed by taking rural settlement landscape construction in mixed living areas of Wuchang for example.It should well deal with problems about nationalities and religious belief,solve the contradiction between traditional life and production mode and modern standardized agricultural life and production mode,promote the maximization of settlement landscape function,coordinate the relation between settlement landscape and natural environment,make settlement landscape correspond with traditional geomancy,construct definite landscape position and create regional landscape feature.Finally,in view of the design and renovation of settlement landscape,it has proposed respecting local natural geological condition,respecting current settlement pattern and layout,avoiding rebuilding new villages,and founding a"Settlement Landscape Construction and Development Autonomous Committee".
基金This researchis supported by the Science Council of Taiwan (Grant No. NSC94-2611-E-172-001)
文摘A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.
基金supported by National Natural Science Foundation of China (42074157)the National Key Research and Development Program of China (2018YFC0310104)the Strategic Priority Research Program of the Chinese Academy of Science(XDA14010203)。
文摘Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion(RTI) and reflection waveform inversion(RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.