This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-sel...This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10CHz, achieving a 2.1 degree increment in half power beam width, and a 7.3 dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.展开更多
A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metalli...A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metallic reflector, this antenna can obtain similar radiation pattern and about 15dB of RCS reduction.展开更多
Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna wh...Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.展开更多
It is an effective approach for reducing antennas'scattering to use frequency selective surface (FSS) as main reflector or subreflector.The measured results are given and discussed. In comparison with ordinary met...It is an effective approach for reducing antennas'scattering to use frequency selective surface (FSS) as main reflector or subreflector.The measured results are given and discussed. In comparison with ordinary metallic refiector antenna, the FSS reflector antenna's radiation properties are maintained basically but its radar cross-section (RCS) is reduced significantly. FSS subrefiector can be more easily applied to practice, but has a little higher RCS level than that of FSS main reflector.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60371010)
文摘This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10CHz, achieving a 2.1 degree increment in half power beam width, and a 7.3 dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.
文摘A Cassegrainian antenna with frequency selective reflector is introduced, and the measured radiation properties and radar cross-section (RCS) of the antenna are given and discussed. In comparison with ordinary metallic reflector, this antenna can obtain similar radiation pattern and about 15dB of RCS reduction.
文摘Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.
文摘It is an effective approach for reducing antennas'scattering to use frequency selective surface (FSS) as main reflector or subreflector.The measured results are given and discussed. In comparison with ordinary metallic refiector antenna, the FSS reflector antenna's radiation properties are maintained basically but its radar cross-section (RCS) is reduced significantly. FSS subrefiector can be more easily applied to practice, but has a little higher RCS level than that of FSS main reflector.