期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
One-dimensional Dynamic Modeling and Simulation of a Planar Direct Internal Reforming Solid Oxide Fuel Cell 被引量:2
1
作者 康英伟 李俊 +3 位作者 曹广益 屠恒勇 李箭 杨杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第2期304-317,共14页
This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed... This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature. 展开更多
关键词 solid oxide fuel cell direct internal reforming PLANAR dynamic model SIMULATION
下载PDF
Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method
2
作者 Jun LI Ying-wei KANG +3 位作者 Guang-yi CAO Xin-jian ZHU Heng-yong TU Jian LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期961-969,共9页
A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based... A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control. 展开更多
关键词 Direct internal reforming (DIR) Solid oxide fuel cell (SOFC) Computational fluid dynamics (CFD) Numerical simulation
下载PDF
Predictive control of a direct internal reforming SOFC using a self recurrent wavelet network model 被引量:1
3
作者 Jun LI Nan GAO +4 位作者 Guang-yi CAO Heng-yong TU Ming-ruo HU Xin-jian ZHU Jian LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第1期61-70,共10页
In this paper,an application of a nonlinear predictive controller based on a self recurrent wavelet network (SRWN) model for a direct internal reforming solid oxide fuel cell (DIR-SOFC) is presented. As operating temp... In this paper,an application of a nonlinear predictive controller based on a self recurrent wavelet network (SRWN) model for a direct internal reforming solid oxide fuel cell (DIR-SOFC) is presented. As operating temperature and fuel utilization are two important parameters,the SOFC is identified using an SRWN with inlet fuel flow rate,inlet air flow rate and current as inputs,and temperature and fuel utilization as outputs. To improve the operating performance of the DIR-SOFC and guarantee proper operating conditions,the nonlinear predictive control is implemented using the off-line trained and on-line modified SRWN model,to manipulate the inlet flow rates to keep the temperature and the fuel utilization at desired levels. Simulation results show satisfactory predictive accuracy of the SRWN model,and demonstrate the excellence of the SRWN-based predictive controller for the DIR-SOFC. 展开更多
关键词 Direct internal reforming (DIR) Solid oxide fuel cell (SOFC) Predictive control Self recurrent wavelet network (SRWN)
原文传递
Investigation on the application of reformed coke oven gas in direct reduction iron production with a mathematical model 被引量:1
4
作者 Juan Wu Shu-Qiang Guo Wei-Zhong Ding 《Advances in Manufacturing》 SCIE CAS 2013年第3期276-283,共8页
To investigate the application of reformed coke oven gas (COG) in producing the direct reduction iron (DRI), we simulated a countercurrent gas solid moving bed reactor in which the iron ore pellet was reduced by r... To investigate the application of reformed coke oven gas (COG) in producing the direct reduction iron (DRI), we simulated a countercurrent gas solid moving bed reactor in which the iron ore pellet was reduced by reformed COG. An ordinary differential equation (ODE) was set based on the unreacted shrinking core model considering both mass and energy balances of the reactor. The concentration and temperature profiles of all species within the reactor were obtained by solving the ODE sys tem. The solid conversion and gas utilization were studied by changing gas flow rate, solid flow rate, reactor length, and the ratio of O/CHa to guide the practical application of COG in DRI production. Model results showed that COG was suitable for the DRI production. In order to meet the requirement of the industrial production, the minimum gas flow rate was set as 130,000 Nm3/h, and the maximum production was 90 t/h. The reactor length and the mole ratio x(O): x(CH4) were depended on the actual industrial situations. 展开更多
关键词 Mathematical simulation - reformed cokeoven gas Gas solid reactor - Direct reduction
原文传递
The Direction and Urgency of the Reform of the State-Owned Property Rights System
5
作者 单东 《Social Sciences in China》 1995年第3期40-42,222,共4页
关键词 The Direction and Urgency of the reform of the State-Owned Property Rights System
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部