We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SM...We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.展开更多
We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifte...We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.展开更多
Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the op...Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.展开更多
A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation be...A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.展开更多
In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fi...In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.展开更多
In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the ...In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the liquid can act as the point reflector for generating random fiber lasing and also as the sensing head.Due to the high sensitivity of the output power of the RRFL to the reflectivity provided by the point reflector in the ultralow reflectivity regime,the proposed RRFL is capable of achieving liquid refractive index sensing by measuring the random lasing output power.We theoretically investigate the effects of the operating pump power and fiber length on the refractive index sensitivity for the proposed RRFL.As a proof-of-concept demonstration,we experimentally realize high-sensitivity half-open short-cavity RRFL-based liquid refractive index sensing with the maximum sensitivity and the sensing resolution of-39.88W/RIU and 2.5075×10^(-5) RIU,respectively.We also experimentally verify that the refractive index sensitivity can be enhanced with the shorter fiber length of the RRFL.This work extends the application of the random fiber laser as a new platform for highly-sensitive refractive index sensing in chemical,biomedical,and environmental monitoring applications,etc.展开更多
Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for mea...Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.展开更多
Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative flu...Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluencc-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.展开更多
Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmitta...Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.展开更多
An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an e...An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an example, two different-order whispering gallery modes (WGMs) might differ in not only RI but also temperature sensitivities. Thus, a second-order sensing matrix should be defined based on these WGMs to determine RI and temperature changes simultaneously. The analysis shows that the RI and temperature detection limits can be achieved on the order of 10.7 RI unit and 10-3 K at a wavelength of approximately 780 nm.展开更多
A Fourier analysis applied to the Mach-Zehnder interferometer (MZI) transmission spectrum for simultaneous refractive index (RI) and temperature measurements is proposed and experimentally demonstrated in this Let...A Fourier analysis applied to the Mach-Zehnder interferometer (MZI) transmission spectrum for simultaneous refractive index (RI) and temperature measurements is proposed and experimentally demonstrated in this Letter. In the fast Fourier transform (FFT) spectrum of the MZI transmission spectrum, several frequency components are generally observed, which means that the transmission spectrum of the MZI is formed by the superposition of some dual-mode interference (DMI) spectra, and each frequency component represents different core-cladding interferences. We can select some dominant frequency components in the FFT spectrum of the MZI transmission spectrum to take the inverse FFT (IFFT). Then, the corresponding DMI patterns can be obtained. Due to the shift of the wavelength of these DMI spectra with changes in the environmental parameters, we can use the coefficient matrix of these DMI spectra for multi-parameter sensing. In this Letter, two DMI patterns are separated from the resultant transmission spectrum of the MZI. As the RI and temperature change, the shifts of the two DMI patterns with respect to the RI and temperature will be observed. The sensitivities of the RI and temperature are -137.1806 nm/RIU (RI unit) and 0.0860 nm/℃, and -22.9955 nm/RIU and 0.0610 nm/℃ for the two DMIs. Accordingly, it can be used to simultaneously measure RI and temperature changes. The approach can eliminate the influence of multiple interferences and improve the accuracy of the sensor.展开更多
In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical ape...In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical aperture (NA) objective lens reflected by the sample under study, the Brewster angle is found. Employing a high NA objective lens allows the measurement of multiple angles of incidence from 0° to 64° in a single shot. The refractive index of the sample is estimated using the measured Brewster angle. The experimental results are compared with the theoretical images computed with the Fresnel theory, and a good agreement is obtained.展开更多
We deposite silicon carbide thin layers on cleaned Si(100) substrates using the plasma enhanced chemical vapor deposition method,and show that the RFTIR spectrum is periodic in the near and medium infrared ranges. I...We deposite silicon carbide thin layers on cleaned Si(100) substrates using the plasma enhanced chemical vapor deposition method,and show that the RFTIR spectrum is periodic in the near and medium infrared ranges. It is shown that both the deposition rate and the uniformity of the thin films are decreased by increasing the substrate temperature,and that the refractive index is increased by increasing the substrate temperature.This shows that there is a trade-off between the quality improvement of the uniformity and refractive index.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775182 and 61505165)Marie Sktodowska-Curie Individual Fellowships in the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.660648)
文摘We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.
基金Supported by the National Natural Science Foundation of China under Grant No F050306
文摘We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.
基金Supported by the National Natural Science Foundation of China under Grant No 61036016the Beijing Higher Education Young Elite Teacher Project under Grant No YETP0086
文摘Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61327012 and 61505160the Natural Science Foundation of Shaanxi Province under Grant No 2016JQ6021the Shaanxi Key Laboratory of Optical Information Technology under Grant No OIT201601
文摘A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi ProvinceProgram for Top Young Academic Leaders of Higher Learning Institutions in Shanxi Province
文摘In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.
基金This work is supported by the Natural Science Foundation of HebeiPi rovincee(GranttNos.F2023501008 and F2020501040)the Fundamental Research Funds for the Central Universities(Grant No.N2323017)+1 种基金the National Natural Science Foundation of China(Grant No.62005186)the Engineeringg Featured Team Fund of Sichuan University(Grant No.2020SCUNG105).
文摘In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the liquid can act as the point reflector for generating random fiber lasing and also as the sensing head.Due to the high sensitivity of the output power of the RRFL to the reflectivity provided by the point reflector in the ultralow reflectivity regime,the proposed RRFL is capable of achieving liquid refractive index sensing by measuring the random lasing output power.We theoretically investigate the effects of the operating pump power and fiber length on the refractive index sensitivity for the proposed RRFL.As a proof-of-concept demonstration,we experimentally realize high-sensitivity half-open short-cavity RRFL-based liquid refractive index sensing with the maximum sensitivity and the sensing resolution of-39.88W/RIU and 2.5075×10^(-5) RIU,respectively.We also experimentally verify that the refractive index sensitivity can be enhanced with the shorter fiber length of the RRFL.This work extends the application of the random fiber laser as a new platform for highly-sensitive refractive index sensing in chemical,biomedical,and environmental monitoring applications,etc.
基金supported by the National Natural Science Foundation of China(Nos.62075001 and 61675010)the Science Foundation of Education Commission of Beijing(No.KZ202010005008)the Beijing Nova Program(No.XX2018072)。
文摘Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60178022the Fujian Provincial Natural Science Foundation under Grant No.2002F008.
文摘Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluencc-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.
基金support from the National Nature Science Foundation of China (Grants 11372305 and 11002138)K.C. Wong Education Foundation for a Royal Society K.C. Wong Postdoctoral Fellowship
文摘Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.
基金supported by the National "973" Program of China (No. 2011CB013000)the National Natural Science Foundation of China (Nos. 90923039and 51025521)
文摘An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an example, two different-order whispering gallery modes (WGMs) might differ in not only RI but also temperature sensitivities. Thus, a second-order sensing matrix should be defined based on these WGMs to determine RI and temperature changes simultaneously. The analysis shows that the RI and temperature detection limits can be achieved on the order of 10.7 RI unit and 10-3 K at a wavelength of approximately 780 nm.
基金supported by the National Natural Science Foundation of China(Nos.61327012 and 61275088)the Research Foundation of Education Bureau of Shaanxi Province,China(No.14JS073)+2 种基金the Youth Science and Technology Innovation Fund of Xi’an Shiyou University(No.2014QN005)the Excellent MA Theses Fund of Xi’an Shiyou University(No.2014yp130816)the Graduate Student Innovation Fund(No.2014cx130842)
文摘A Fourier analysis applied to the Mach-Zehnder interferometer (MZI) transmission spectrum for simultaneous refractive index (RI) and temperature measurements is proposed and experimentally demonstrated in this Letter. In the fast Fourier transform (FFT) spectrum of the MZI transmission spectrum, several frequency components are generally observed, which means that the transmission spectrum of the MZI is formed by the superposition of some dual-mode interference (DMI) spectra, and each frequency component represents different core-cladding interferences. We can select some dominant frequency components in the FFT spectrum of the MZI transmission spectrum to take the inverse FFT (IFFT). Then, the corresponding DMI patterns can be obtained. Due to the shift of the wavelength of these DMI spectra with changes in the environmental parameters, we can use the coefficient matrix of these DMI spectra for multi-parameter sensing. In this Letter, two DMI patterns are separated from the resultant transmission spectrum of the MZI. As the RI and temperature change, the shifts of the two DMI patterns with respect to the RI and temperature will be observed. The sensitivities of the RI and temperature are -137.1806 nm/RIU (RI unit) and 0.0860 nm/℃, and -22.9955 nm/RIU and 0.0610 nm/℃ for the two DMIs. Accordingly, it can be used to simultaneously measure RI and temperature changes. The approach can eliminate the influence of multiple interferences and improve the accuracy of the sensor.
基金GLM and VMRB acknowledge CONACYT-M6xico for the scholarship 353317 and 394565, respectively, which were given to them to do their graduate studies.
文摘In this Letter, a refractive index measurement of a dielectric sample using highly focused radially polarized light is reported. Through imaging analysis of the optical field at the pupil plane of a high numerical aperture (NA) objective lens reflected by the sample under study, the Brewster angle is found. Employing a high NA objective lens allows the measurement of multiple angles of incidence from 0° to 64° in a single shot. The refractive index of the sample is estimated using the measured Brewster angle. The experimental results are compared with the theoretical images computed with the Fresnel theory, and a good agreement is obtained.
文摘We deposite silicon carbide thin layers on cleaned Si(100) substrates using the plasma enhanced chemical vapor deposition method,and show that the RFTIR spectrum is periodic in the near and medium infrared ranges. It is shown that both the deposition rate and the uniformity of the thin films are decreased by increasing the substrate temperature,and that the refractive index is increased by increasing the substrate temperature.This shows that there is a trade-off between the quality improvement of the uniformity and refractive index.