A system combining photovoltaic power generation and cogeneration is proposed to improve the photoelectric absorption capacity. First, a time-of-use price strategy is adopted to guide users to change their electricity...A system combining photovoltaic power generation and cogeneration is proposed to improve the photoelectric absorption capacity. First, a time-of-use price strategy is adopted to guide users to change their electricity consumption habits for participation in the demand response, and a demand response model is established. Then, particle swarm optimization(PSO)is used with the aim of minimizing the operation cost of the microgrid to achieve economic dispatching of the microgrid. This considers power balance equation constraints, unit operation constraints, energy storage constraints, and heat storage constraints. Finally, the simulation results show the improved level of photoelectric consumption using the proposed scheme and the economic benefits of the microgrid.展开更多
基金supported by the key projects of the National Natural Science Foundation of China (No.61833008,No.61573300)Jiangsu Provincial Natural Science Foundation of China (No.BK20171445)Key Research and Development Plan of Jiangsu Province (No.BE2016184)。
文摘A system combining photovoltaic power generation and cogeneration is proposed to improve the photoelectric absorption capacity. First, a time-of-use price strategy is adopted to guide users to change their electricity consumption habits for participation in the demand response, and a demand response model is established. Then, particle swarm optimization(PSO)is used with the aim of minimizing the operation cost of the microgrid to achieve economic dispatching of the microgrid. This considers power balance equation constraints, unit operation constraints, energy storage constraints, and heat storage constraints. Finally, the simulation results show the improved level of photoelectric consumption using the proposed scheme and the economic benefits of the microgrid.