期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Magnetic and magnetocaloric effect of Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass
1
作者 于世霖 田路 +4 位作者 王俊峰 赵新国 李达 莫兆军 李昺 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期602-606,共5页
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_... Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators. 展开更多
关键词 magnetic materials magnetocaloric effect high-entropy metallic glass magnetic refrigeration large refrigeration capacity
下载PDF
Magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys near Martensitic transformation 被引量:1
2
作者 傅斌 龙毅 +4 位作者 段静芳 王超伦 常永勤 叶荣昌 吴光恒 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期576-579,共4页
This paper studies the magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys in detail during heating and cooling isothermal magnetisation processes. The Ni-Mn-Ga alloys show larger magnetic hysteresis whe... This paper studies the magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys in detail during heating and cooling isothermal magnetisation processes. The Ni-Mn-Ga alloys show larger magnetic hysteresis when they trans-form from austenite to martensite, but smaller magnetic hysteresis when they transform from martensite to austenite. This behaviour is independent of either the pure Ni-Mn-Ga alloys or the alloys doped with other elements. Because of the existence of the magnetic hysteresis, the relation between the magnetic entropy change and refrigeration capacity is not simply linear. For practical consideration, magnetocaloric effect of Ni-Mn-Ga alloys should be investigated both on cooling and heating processes. 展开更多
关键词 magnetic refrigeration capacity first-order magnetic transition Heusler alloys
下载PDF
Magnetic entropy change of Ce6Ni2Si3-type and large refrigerant capacity GdCoSiGe compound* 被引量:1
3
作者 Shen Jun Zhang Hu Wu Jian-Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期482-486,共5页
Magnetic entropy change (△SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Geo.5 compounds have been investigated. The Gd6Col.67Si2.5Geo.5 undergoes a reversible second-order phase transition at ... Magnetic entropy change (△SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Geo.5 compounds have been investigated. The Gd6Col.67Si2.5Geo.5 undergoes a reversible second-order phase transition at the Curie temperature Tc = 296 K. The high saturation magnetization leads to a large ASM and the maximal value of △SM is found to be 5.9 J/kg. K around TC for a field change of 0-5 T. A broad distribution of the △SM peak is observed and the full width at half maximum of the △SM peak is about 101 K under a magnetic field of 5 T. The large RC is found around TC and its value is 424 J/kg. 展开更多
关键词 Gd6Col.67Si2.sGe0.5 compound magnetocaloric effect refrigerant capacity
下载PDF
Analysis of a Water-Cooled Unit under Different Loads
4
作者 Daoming Shen Jinhong Xia +1 位作者 Chao Gui Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1863-1873,共11页
In order to ensure the safe operation of the compressors used in water chillers,in the present study some interlock protections have been added to the related design.These include a low pressure protection,a high pres... In order to ensure the safe operation of the compressors used in water chillers,in the present study some interlock protections have been added to the related design.These include a low pressure protection,a high pressure protection,an exhaust temperature protection and a differential pressure protection.Some tests have been conducted by tuning the saturation suction and exhaust temperatures of the compressor through adjustment of the cold source outlet temperature and the ambient temperature.The results show that the ambient temperature increases with decreasing device load and increasing fan speed under the same saturated suction temperature;the device refrigerating capacity steps up with augmenting load and dropping saturation exhaust temperature,while it is not greatly affected by the fan speed.Moreover,the Energy efficiency ratio(COP)decreases with the rise of the saturation exhaust temperature.This parameter is not affected much by the device load and fan speed at high saturation exhaust temperature,while it improves on increasing the device load and decreasing the fan speed at low saturation exhaust temperature. 展开更多
关键词 Ambient temperature cold source temperature refrigerating capacity Energy efficiency ratio(COP) fan speed LOAD
下载PDF
Effect of R substitution on magnetic properties and magnetocaloric effects of La_(1-x)R_xFe_(11.5)Si_(1.5) compounds with R=Ce,Pr and Nd 被引量:6
5
作者 沈俊 李养贤 +1 位作者 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期2058-2062,共5页
Magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 (R=Pr, (0 ≤ x ≤ 0.5); R = Ce and Nd, (0 ≤ x ≤ 0.3)) compounds are investigated. Partially replacing La with R = Ce, Pr and Nd in La1-xRxFe... Magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 (R=Pr, (0 ≤ x ≤ 0.5); R = Ce and Nd, (0 ≤ x ≤ 0.3)) compounds are investigated. Partially replacing La with R = Ce, Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction. The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition, which leads to a remarkable increase in magnetic entropy change ASm and also in hysteresis loss. However, a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5. In the present samples, a large △Sm and a high RCeff have been achieved simultaneously. 展开更多
关键词 magnetocaloric effect hysteresis loss refrigerant capacity
下载PDF
Experimental Analysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volumetric and Isentropic Efficiency 被引量:4
6
作者 Daoming Shen Chao Gui +1 位作者 Jinhong Xia Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2020年第3期489-500,共12页
The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression... The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature. 展开更多
关键词 Parallel compressor unit evaporation temperature condensation temperature pressure ratio refrigeration capacity energy efficiency ratio(COP)
下载PDF
Magnetic entropy change and magnetic phase transition of LaFe11.4Al1.6Cx (x=0-0.8) compounds 被引量:2
7
作者 陈静 张宏伟 +2 位作者 张立刚 董巧燕 汪汝武 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期845-849,共5页
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in det... The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1. 展开更多
关键词 LaFe11.4Al1.6Cx compounds magnetic phase transition magnetic entropy change refrigerant capacity
下载PDF
Martensitic transformation and giant magnetic entropy change in Ni_(42.8)Mn_(40.3)Co_(5.7)Sn_(11.2) alloy
8
作者 陈峰华 宫长伟 +2 位作者 郭艳萍 张敏刚 柴跃生 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期514-518,共5页
The crystal structure, phase transition, and magnetocaloric effect in Ni42.8Mn40.3Co5.7Sn11.2 alloy are investigated by structure analysis and magnetic measurements. A large magnetic entropy change of 45.6 J/kg.K is o... The crystal structure, phase transition, and magnetocaloric effect in Ni42.8Mn40.3Co5.7Sn11.2 alloy are investigated by structure analysis and magnetic measurements. A large magnetic entropy change of 45.6 J/kg.K is obtained at 215 K under a magnetic field of 30 kOe (1 Oe = 79.5775 A.m-1). The effective refrigerant capacity of Ni42.8Mn40.3Co5.7Sn11.2 alloy reaches 72.1 J/kg under an applied field changing from 0 to 30 kOe. The external magnetic field shifts the martensitic transition temperature about 3-4 K/10 kOe towards low temperature, indicating that magnetic field can retard the phase transition to a certain extent. The origin of large magnetic entropy change is discussed in the paper. 展开更多
关键词 Ni-Mn-Sn refrigerant capacity martensitic transition magnetic entropy change
下载PDF
Magnetostructural transformation and magnetocaloric effect in Mn_(48-x)V_xNi_(42)Sn_(10) ferromagnetic shape memory alloys
9
作者 Najam ul Hassan Ishfaq Ahmad Shah +4 位作者 Tahira Khan 刘俊 龚元元 缪雪飞 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期439-443,共5页
In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10(x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement ... In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10(x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0-5 T are 15.2, 18.8, and 24.3 J.kg^-1.K^-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48-xVxNi42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. 展开更多
关键词 magnetostructural coupling field driving capacity refrigeration capacity magnetocaloric effect
下载PDF
Effect of Dy substitution on magnetic properties and magnetocaloric effects of Tb_6Co_(1.67)Si_3 compounds
10
作者 赵金良 沈俊 +3 位作者 李养贤 胡凤霞 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期423-426,共4页
The magnetic and magnetocaloric properties of (Tb1-xDyx)6Co1.67Si3 (0 ≤ x ≤ 0.8) have been experimentally investigated. The compounds exhibit a Ce6Ni2Si3-type hexagonal structure and undergo a second-order magne... The magnetic and magnetocaloric properties of (Tb1-xDyx)6Co1.67Si3 (0 ≤ x ≤ 0.8) have been experimentally investigated. The compounds exhibit a Ce6Ni2Si3-type hexagonal structure and undergo a second-order magnetic transition. The Curie temperature decreases from - 187 K to 142 K as the content of Dy grows from 0 to 0.8. The maximal magnetic entropy change, for a field change of 0-5 T, varies between - 6.2 and - 7.4 J/kg.K, slightly decreasing when Dy is introduced. The substitution of Dy leads to a remarkable increase in refrigeration capacity (RC). A large RC value of - 626 J/kg is achieved for x = 0.4 under a field change of 0-5 T. 展开更多
关键词 magnetic properties magnetic entropy change refrigerant capacity
下载PDF
Giant low-field reversible magnetocaloric effect at liquid helium temperature of niobium and iron co-substituted EuTiO_(3) compounds
11
作者 Zhihong Hao Quanyi Liu +2 位作者 Huicai Xie Yan Zhang Zhaojun Mo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期710-715,共6页
Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and i... Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and iron(Fe)co-substituted EuTiO_(3) perovskites with cubic structure(space group pm3m)was successfully fabricated,and their magnetic properties as well as cryogenic magnetocaloric effects were investigated in detail.As expected,the introduction of Nb and Fe can significantly modulate the magnetic phase transition and magnetocaloric effect of the EuTiO_(3) compounds.With increasing Fe concentration,two local minima corresponding to the AFM-FM magnetic phase transition near 5.0 K and FM-PM transition near 10 K with no hysteresis in the thermomagnetic curves are observed,which is attributed to an enhancement of FM coupling.At the same time,the gradually widened-ΔSM-T curves and the two peaks with a broad shoulder lead to considerable refrigeration capacity(RC).With the field change ofΔH=2 T,the calculated values of-ΔS_(M)^(max) for the EuTi_(0.9375-x)Nb_(0.0625)Fe_(x)O_(3)(x=0.075,0.1,0.125,0.15)compounds are 24.2,17.6,14.5 and 14.0 J/(kg·K),respectively.The corresponding RC values were calculated to be 144.6,138.3,151.2 and 159 J/kg,respectively.Especially,the values of-ΔS_(M)^(max) for EuTi_(0.8625)Nb_(0.0625)Fe_(0.075)O_(3) are 8.6 and 15.1 J/(kg·K)under low field changes of 0.5 and 1 T,respectively.The giant low-field reversible magnetocaloric effect makes them attractive candidates for magnetic refrigeration in the liquid helium temperature region. 展开更多
关键词 Magnetocaloric effect Refrigeration capacity Magnetic entropy change RAREEARTHS
原文传递
Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy 被引量:4
12
作者 Yikun Zhang Jian Zhu +2 位作者 Shuo Li Jiang Wang Zhongming Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第7期66-71,共6页
Magnetic refrigeration(MR)by utilizing the magnetocaloric(MC)effect is recognized as one of the most potential promising solid state environmentally friendly and high efficiency alternative method to the well-used sta... Magnetic refrigeration(MR)by utilizing the magnetocaloric(MC)effect is recognized as one of the most potential promising solid state environmentally friendly and high efficiency alternative method to the well-used state-of-the-art gas compression cooling technique.In this work,a systematic investigation of quinary equi-atomic rare-earths(RE)based Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) high-entropy(HE)amorphous alloy in terms of the microstructure,magnetic and magnetocaloric(MC)properties have been reported.The Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) exhibits promising glass forming ability with an undercooled liquid region of 72 K.Excellent cryogenic MC performances can be found in wide temperature from∼25 and∼75 K,close to H_(2) and N_(2) liquefaction,respectively.Apart from the largest magnetic entropy change(-S M)reaches 17.84 J/(kg K)with 0-7 T magnetic field change,corresponding refrigerant capacity(RC)attains a giant value of 1030 J/kg.The promising cryogenic MC performances together with the unique HE amorphous characterizations make the quinary Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) HE amorphous alloy attractive for cryogenic MR applications. 展开更多
关键词 HE-amorphous ribbons Magnetocaloric performances Rare earths Magnetic properties Giant refrigerant capacity
原文传递
Large magnetic refrigerant capacity of HoFe_(1-x)Co_(x)Al(x=0,0.3)compounds
13
作者 Zhi-Yi Xu Zhi-Gao Zhang +3 位作者 Rong-Li Gao Wen-Jie Gong Rui-Fen Hou An-Li Lin 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2868-2872,共5页
Magnetic and magnetocaloric properties of HoFe_(1-x)Co_(x)Al(x = 0, 0.3) were investigated. Both HoFeAl and HoFe_(0.7)Co_(0.3) Al undergo a second-order ferromagnetic(FIM) to paramagnetic(PM) transition at Curie tempe... Magnetic and magnetocaloric properties of HoFe_(1-x)Co_(x)Al(x = 0, 0.3) were investigated. Both HoFeAl and HoFe_(0.7)Co_(0.3) Al undergo a second-order ferromagnetic(FIM) to paramagnetic(PM) transition at Curie temperatures(TC) of 87 and 82 K, respectively. The magnetocaloric effect is improved by the introduction of Co in HoFeAl compound. For a field change from 0 to 5 T,the maximum values of magnetic entropy change(﹣△SM)are 7.0 J·kg^(-1)·K^(-1) for HoFeAl and 8.6 J·kg^(-1)·K^(-1) for HoFe_(0.7)Co_(0.3) Al. In addition, the refrigerant capacity(RC)is enhanced largely from 416.2 J·kg^(-1) for HoFeAl to561.9 J·kg^(-1) for HoFe_(0.7)Co_(0.3) Al. This large RC is attributed to the large ﹣?SM and the wide temperature span of ?SM peak in HoFe_(0.7)Co_(0.3) Al compound. The physical mechanism of improvement in magnetocaloric effect by Co substitution in HoFeAl was also discussed in detail. 展开更多
关键词 RTX compound Intermetallic compound Magnetocaloric effect Refrigerant capacity
原文传递
Thermodynamic Analysis on the Performance of Barocaloric Refrigeration Systems Using Neopentyl Glycol as the Refrigerant 被引量:2
14
作者 DAI Zhaofeng SHE Xiaohui +3 位作者 WANG Chen DING Yulong ZHANG Xiaosong ZHAO Dongliang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1063-1073,共11页
Barocaloric refrigeration is regarded as one of the next-generation alternative refrigeration technology due to its environmental friendliness.In recent years,many researchers have been devoted to finding materials wi... Barocaloric refrigeration is regarded as one of the next-generation alternative refrigeration technology due to its environmental friendliness.In recent years,many researchers have been devoted to finding materials with colossal barocaloric effects,while neglecting the research on barocaloric refrigeration devices and thermodynamic cycles.Neopentyl glycol is regarded as one of the potential refrigerants for barocaloric refrigeration due to its giant isothermal entropy changes and relatively low operating pressure.To evaluate the performance of the barocaloric system using Neopentyl glycol,for the first time,this study establishes a thermodynamic cycle based on the metastable temperature-entropy diagram.The performance of the proposed system is investigated from the aspects of irreversibility,operating temperature range,and operating pressure,and optimized with finite-rate heat transfer.The guidance for the optimal design of the system is given by revealing the effect of the irreversibility in two isobaric processes.The results show that a COP of 8.8 can be achieved at a temperature span of 10 K when the system fully uses the phase transition region of Neopentyl glycol,while a COP of 3 can be achieved at a temperature span of 10 K when the system operates at room temperature.Furthermore,this study also shows that the system performance can be further improved through the modification of Neopentyl glycol,and some future development guidance is provided. 展开更多
关键词 barocaloric refrigeration neopentyl glycol thermodynamic analysis COP refrigeration capacity
原文传递
Structure,magnetism and magnetic thermal properties of heavy rare earth Tb1-xTmxFeO3(x=0.00,0.15,0.25) polycrystalline samples 被引量:1
15
作者 Xiang Jin Jianjun Zhao +6 位作者 Hongwei Chen Fengze Cao Li Cheng Taichao Su Wenxing Wang Jia Liu Yi Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第6期600-605,共6页
Tb1-xTmxFeO3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is p... Tb1-xTmxFeO3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is pbnm.When the Tm3+doping amount increases,the characteristics of the spin-flip of the sample decreases following an initial increase at the beginning;the antiferromagnetic property almost reaches zero;the magnetization decreases at the beginning but increases later on.The maximum magnetic entropy change and magnetic refrigeration effect RCP are reduced at varying degrees.Under a 7 T magnetic field,the maximum magnetic entropy change,△Smax,for the three samples of Tb1-xTmxFeO3 with x=0.00,0.15,0.25 is 13.78,-9.28,and 10.69 J/(K·kg),respectively;the magnetic refrigeration capacity(RCP) is 316.85,175.2,and 297.60 J/kg,respectively.In summary,doping with the element Tm reduces △Smax and RCP of the sample.Since the maximum magnetic entropy change and the cooling capacity for the three samples are relatively large,they can be used as an alternative for magnetic refrigerants. 展开更多
关键词 SPIN-FLIP Magnetic entropy change Magnetic refrigeration capacity MAGNETISM Rare earths
原文传递
Influence of gadolinium and dysprosium substitution on magnetic properties and magnetocaloric effect of Fe78-xRExSi4Nb5B12Cu1 amorphous alloys 被引量:1
16
作者 Lizhong Zhao Huacun Tian +3 位作者 Xichun Zhong Zhongwu Liu Jean-Marc Greneche R.V.Ramanujan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第12期1317-1321,共5页
Amorphous Fe78-xRExSi4 Nb5 B12Cu1(RE=Gd,Dy) ribbons with different RE contents were prepared by melt spinning to investigate the effect of heavy rare earth(Gd,Dy) substitution on the hyperfine structure,magnetic prope... Amorphous Fe78-xRExSi4 Nb5 B12Cu1(RE=Gd,Dy) ribbons with different RE contents were prepared by melt spinning to investigate the effect of heavy rare earth(Gd,Dy) substitution on the hyperfine structure,magnetic properties and magnetocaloric effect.The Curie temperature of RE substituted alloys,hyperfine field and magnetic moments of Fe atoms initially increase up to 1 at% RE content and then decrease monotonously for increasing RE content up to 10 at%.The dependence of magnetic entropy change(-△SM) and refrigeration capacity(RC) of the alloys on RE contents displays the same tendency.The RCAREA values of the alloys substituted with 1 at% Gd and Dy are similar to those of recently reported Fe-based metallic glasses with enhanced RC values compared with those of Gd5 Ge1.9Si2 Fe0.1.Enhanced-△SM and RC values,negligible coercive force and hysteresis commonly make these Fe78-xREx-Si4 Nb5 B12Cu1 amorphous alloys as low-cost candidates for high-temperature magnetic refrigeration. 展开更多
关键词 Magnetic properties Magnetocaloric effect Refrigeration capacity Rare earths
原文传递
Low-field magnetic entropy changes in (Gd_(1-x)Y_x)_3Al_2 alloys
17
作者 韩志达 钱斌 +5 位作者 张平 江学范 王敦辉 陈杰 冯金福 都有为 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第3期235-238,共4页
The effects of Y substitution on the magnetic properties and magnetocaloric effect of(Gd1-xYx)3Al2(x=0-0.3) alloys were investigated by X-ray diffraction and magnetization measurements.All samples crystallized in ... The effects of Y substitution on the magnetic properties and magnetocaloric effect of(Gd1-xYx)3Al2(x=0-0.3) alloys were investigated by X-ray diffraction and magnetization measurements.All samples crystallized in single phase with Zr3Al2-type tetragonal structure.The lattice parameters and magnetic transition temperature decreased obviously with increasing Y content.The magnetic entropy change and refrigerant capacity of these alloys were calculated.The adjustable transition temperature and favorable properties of magnetocaloric effect made these alloys potential candidate as magnetic refrigerant in the temperature range of 190-290 K. 展开更多
关键词 (Gd1-xYx)3Al2 magnetocaloric effect refrigerant capacity second-order transition rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部