期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performance Evaluation of a Molten Carbonate Fuel Cell-Graphene Thermionic Converter-Thermally Regenerative Electrochemical Cycles Hybrid System
1
作者 HU Yaowen HUANG Yuewu 《Journal of Donghua University(English Edition)》 CAS 2021年第4期359-366,共8页
A combined system model is proposed including a molten carbonate fuel cell(MCFC),a graphene thermionic converter(GTIC)and thermally regenerative electrochemical cycles(TRECs).The expressions for power output,energy ef... A combined system model is proposed including a molten carbonate fuel cell(MCFC),a graphene thermionic converter(GTIC)and thermally regenerative electrochemical cycles(TRECs).The expressions for power output,energy efficiency of the subsystems and the couple system are formulated by considering several irreversible losses.Energy conservation equations between the subsystems are achieved leaned on the first law of thermodynamics.The optimum operating ranges for the combined system are determined compared with the MCFC system.Results reveal that the peak power output density(POD)and the corresponding energy efficiency are 28.22%and 10.76%higher than that of the single MCFC system,respectively.The effects of five designing parameters on the power density and energy efficiency of the MCFC/GTIC/TRECs model are also investigated and discussed. 展开更多
关键词 molten carbonate fuel cell(MCFC) graphene thermionic converter(GTIC) thermally regenerative electrochemical cycle(TREC) hybrid system parameter analysis
下载PDF
Exploitation of Waste Heat from a Solid Oxide Fuel Cell via an Alkali Metal Thermoelectric Converter and Electrochemical Cycles
2
作者 ZHA Jingjing HUANG Yuewu 《Journal of Donghua University(English Edition)》 CAS 2021年第6期549-556,共8页
In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cy... In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cycles(TRECs)is put forward.Considering the main electrochemically and thermodynamically irreversible losses,the power output and the efficiency of the subsystems and the integrated system are compared,and optimally operating regions for the current density,the power output,and the efficiency of the integrated system are explored.Calculations demonstrate that the maximum power density of the considered system is up to 7466 W/m2,which allows 18%and 74%higher than that of the conventional SOFC-AMTEC device and the stand-alone fuel cell model,respectively.It is proved that the considered system is an efficient approach to boost energy efficiency.Moreover,the influence of several significant parameters on the comprehensive performance of the integrated system is expounded in detail,including the electrolyte thickness of the SOFC,the leakage resistance of the SOFC,and the area ratio between the SOFC electrode and the AMTEC subsystem. 展开更多
关键词 solid oxide fuel cell(SOFC) thermally regenerative electrochemical cycle alkali metal thermoelectric converter(AMTC) hybrid system performance comparison
下载PDF
Charging-free thermally regenerative electrochemical cycle for electricity generation from daytime solar heat and nighttime darkness
3
作者 Hang Zhang Cheng-Wei Qiu Qing Wang 《Nano Research Energy》 2023年第4期1-3,共3页
The extensive exploration of energy conversion harvested from the environment into electricity is recently driven by the significant demand to power off-grid electronics,particularly Internet-of-Things(IoT)sensors.Thi... The extensive exploration of energy conversion harvested from the environment into electricity is recently driven by the significant demand to power off-grid electronics,particularly Internet-of-Things(IoT)sensors.This highlight previews the latest advance of a charging-free thermally regenerative electrochemical cycle(TREC)for continuous electricity generation from solar heat and darkness with the aid of dual-mode thermal regulations.Such a spontaneous all-day electricity generation with high power and efficiency shows great potential for powering a wide range of distributed electronics for IoT and other applications. 展开更多
关键词 redox flow cell thermally regenerative electrochemical cycle radiative cooling dual-mode thermal regulation low-grade heat harvesting internet-of-things
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部