期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Innovative Design and Additive Manufacturing of Regenerative Cooling Thermal Protection System Based on the Triply Periodic Minimal Surface Porous Structure 被引量:3
1
作者 Xinglong Wang Cheng Wang +3 位作者 Xin Zhou Mingkang Zhang Peiyu Zhang Lei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期495-508,共14页
The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of... The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of hypersonic vehicles.Triply periodic minimal surface(TPMS)is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics.In this study,test pieces were manufactured using Ti6Al4V lightweight material.We designed three types of porous test pieces,and the interior was filled with a TPMS lattice(Gyroid,Primitive,I-WP)with a porosity of 30%.All porous test pieces were manufactured via selective laser melting technology.A combination of experiments and finite element simulations were performed to study the selection of the internal cavity structure of the regenerative cooling thermal protection system.Hence,the relationship between the geometry and mechanical properties of a unit cell is established,and the deformation mechanism of the porous unit cell is clarified.Among the three types of porous test pieces,the weight of the test piece filled with the Gyroid unit cell was reduced by 8.21%,the average tensile strength was reduced by 17.7%compared to the solid test piece,while the average tensile strength of the Primitive and I-WP porous test pieces were decreased by 30.5%and 33.3%,respectively.Compared with the other two types of unit cells,Gyroid exhibited better mechanical conductivity characteristics.Its deformation process was characterised by stretching,shearing,and twisting,while the Primitive and I-WP unit cells underwent tensile deformation and tensile and shear deformation,respectively.The finite element predictions in the study agree well with the experimental results.The results can provide a basis for the design of regenerative cooling thermal protection system. 展开更多
关键词 Triply periodic minimal surface(TPMS) regenerative cooling thermal protection system selective laser melting mechanical properties fracture analysis
下载PDF
The astrocyte scar – not so inhibitory after all?
2
作者 Bor Luen Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1054-1055,共2页
Damaged adult central nervous system axons have very limited regenerative capacity,if any.Other than an intrinsic deficiency(Liu et al.,2011)in axonal extension and guidance compared to embryonic neurons or peripher... Damaged adult central nervous system axons have very limited regenerative capacity,if any.Other than an intrinsic deficiency(Liu et al.,2011)in axonal extension and guidance compared to embryonic neurons or peripheral neurons,the injury site is also generally viewed to be non-permissive for axonal regrowth.In particular, 展开更多
关键词 astrocyte axonal embryonic guidance regeneration intrinsic regenerative glial protective blocked
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部